skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Boutilier, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recommender systems, preference elicitation (PE) is an effective way to learn about a user’s preferences to improve recommendation quality. Expected value of information (EVOI), a Bayesian technique that computes expected gain in user utility, has proven to be effective in selecting useful PE queries. Most EVOI methods use probabilistic models of user preferences and query responses to compute posterior utilities. By contrast, we develop model-free variants of EVOI that rely on function approximation to obviate the need for specific modeling assumptions. Specifically, we learn user response and utility models from existing data (often available in real-world recommender systems), which are used to estimate EVOI rather than relying on explicit probabilistic inference. We augment our approach by using online planning, specifically, Monte Carlo tree search, to further enhance our elicitation policies. We show that our approach offers significant improvement in recommendation quality over standard baselines on several PE tasks. 
    more » « less