- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Boutte, Julien (3)
-
Fishbein, Mark (3)
-
Livshultz, Tatyana (2)
-
Straub, Shannon C. (2)
-
Cronn, Richard C. (1)
-
Foote, Abbey (1)
-
Hansen, Kimberly (1)
-
Liston, Aaron (1)
-
McDonnell, Angela (1)
-
Simões, André O. (1)
-
Straub, Shannon C. K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
PremiseApocynaceae is the 10th largest flowering plant family and a focus for study of plant–insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non‐model taxa, such as Apocynaceae. MethodsTranscriptomes were used to design probes for targeted sequencing of putatively single‐copy nuclear genes across Apocynaceae. The sequences obtained were used to assess the success of the probe design, the intrageneric and intraspecific variation in the targeted genes, and the utility of the genes for inferring phylogeny. ResultsFrom 853 candidate nuclear genes, 835 were consistently recovered in single copy and were variable enough for phylogenomics. The inferred gene trees were useful for coalescent‐based species tree analysis, which showed all subfamilies of Apocynaceae as monophyletic, while also resolving relationships among species within the genusApocynum. Intraspecific comparison ofElytropus chilensisindividuals revealed numerous single‐nucleotide polymorphisms with potential for use in population‐level studies. DiscussionCommunity use of this Hyb‐Seq probe set will facilitate and promote progress in the study of Apocynaceae across scales from population genomics to phylogenomics.more » « less
-
Fishbein, Mark; Straub, Shannon C.; Boutte, Julien; Hansen, Kimberly; Cronn, Richard C.; Liston, Aaron (, American Journal of Botany)
-
Fishbein, Mark; Livshultz, Tatyana; Straub, Shannon C.; Simões, André O.; Boutte, Julien; McDonnell, Angela; Foote, Abbey (, American Journal of Botany)