Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Geomagnetic disturbances (GMDs) are rapid fluctuations in the strength and direction of the magnetic field near the surface of the Earth which can cause electric currents to be induced in the ground. The geomagnetically induced currents (GICs) can cause damage to pipelines and power grids. A detection algorithm has been developed to identify rapid changes in 10 s averaged magnetometer data. This higher resolution data is important in capturing the most rapid changes associated with extreme GIC events. The algorithm has been used on an array of ground‐based magnetometers from SuperMAG data from 2010 to 2022, creating a new list of global GMDs. Data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) is used to place the observed GMDs in the context of the global pattern of magnetosphere‐ionosphere field‐aligned currents (FACs). A dawn sector population of GMDs is found to lie near the boundary between the region 1 and region 2 FACs, while a pre‐midnight sector population is found to occur poleward of the FAC boundary on region 1 upward FACs. It is also shown that the latitude of the GMDs expands with the FAC boundary and their occurrence peaks around 77° magnetic latitude.more » « less
-
Abstract During periods of increased geomagnetic activity, perturbations within the terrestrial magnetosphere are known to induce currents within conducting materials, at the surface of Earth through rapid changes in the local magnetic field over time (dB/dt). These currents are known as geomagnetically induced currents and have potentially detrimental effects on ground based infrastructure. In this study we undertake case studies of five geomagnetic storms, analyzing a total of 19 days of 1‐s SuperMAG data in order to better understand the magnetic local time (MLT) distribution, size, and occurrence of “spikes” indB/dt, with 131,447 spikes indB/dtexceeding 5 nT/s identified during these intervals. These spikes were concentrated in clusters over three MLT sectors: two previously identified pre‐midnight and dawn region hot‐spots, and a third, lower‐density population centered around 12 MLT (noon). The noon spike cluster was observed to be associated with pressure pulse impacts, however, due to incomplete magnetometer station coverage, this population is not observed for all investigated storms. The magnitude of spikes indB/dtare determined to be greatest within these three “hot‐spot” locations. These spike occurrences were then compared with field‐aligned current (FAC) data, provided by the Active Magnetospheric Planetary Electrodynamic Response Experiment. Spikes are most likely to be co‐located with upward FACs (56%) rather than downward FACs (30%) or no FACs (14%).more » « less
-
Abstract A necessary condition for the generation of Geomagnetically Induced Currents (GICs) that can pose hazards for technological infrastructure is the occurrence of large, rapid changes in the magnetic field at the surface of the Earth. We investigate the causes of such events or “spikes” observed by SuperMAG at auroral latitudes, by comparing with the time‐series of different types of geomagnetic activity for the duration of 2010. Spikes are found to occur predominantly in the pre‐midnight and dawn sectors. We find that pre‐midnight spikes are associated with substorm onsets. Dawn sector spikes are not directly associated with substorms, but with auroral activity occurring within the westward electrojet region. Azimuthally‐spaced auroral features drift sunwards, producing Ps6 (10–20 min period) magnetic perturbations on the ground. The magnitude of is determined by the flow speed in the convection return flow region, which in turn is related to the strength of solar wind‐magnetospheric coupling. Pre‐midnight and dawn sector spikes can occur at the same time, as strong coupling favors both substorms and westward electrojet activity; however, the mechanisms that create them seem somewhat independent. The dawn auroral features share some characteristics with omega bands, but can also appear as north‐south aligned auroral streamers. We suggest that these two phenomena share a single underlying cause. The associated fluctuations in the westward electrojet produce quasi‐periodic negative excursions in the AL index, which can be mis‐identified as recurrent substorm intensifications.more » « less
-
Abstract We investigate a 15‐day period in October 2011. Auroral observations by the Special Sensor Ultraviolet Spectrographic Imager instrument onboard the Defense Meteorological Satellite Program F16, F17, and F18 spacecraft indicate that the polar regions were covered by weak cusp‐aligned arc (CAA) emissions whenever the interplanetary magnetic field (IMF) clock angle was small, |θ| < 45°, which amounted to 30% of the time. Simultaneous observations of ions and electrons in the tail by the Cluster C4 and Geotail spacecraft showed that during these intervals dense (≈1 cm−3) plasma was observed, even as far from the equatorial plane of the tail as |ZGSE| ≈ 13RE. The ions had a pitch angle distribution peaking parallel and antiparallel to the magnetic field and the electrons had pitch angles that peaked perpendicular to the field. We interpret the counter‐streaming ions and double loss‐cone electrons as evidence that the plasma was trapped on closed field lines, and acted as a source for the CAA emission across the polar regions. This suggests that the magnetosphere was almost entirely closed during these periods. We further argue that the closure occurred as a consequence of dual‐lobe reconnection. Our finding forces a significant re‐evaluation of the magnetic topology of the magnetosphere during periods of northwards IMF.more » « less
An official website of the United States government
