skip to main content

Search for: All records

Creators/Authors contains: "Bowling, Nathan P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapid evaporation of 1:1 solutions of diethynylpyridines and N -halosuccinimides, that react together to form haloalkynes, led to the isolation of unreacted 1:1 cocrystals of the two components. The 1:1 cocrystal formed between 2,6-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) contains an N -iodosuccinimide–pyridine I...N halogen bond and two terminal alkyne–succinimide carbonyl C—H...O hydrogen bonds. The three-dimensional extended structure features interwoven double-stranded supramolecular polymers that are interconnected through halogen bonds. The cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide (C 4 H 4 INO 2 ·C 9 H 5 N) also features an I...N halogen bond and two C—H...O hydrogen bonds. However, the components form essentially planar double-stranded one-dimensional zigzag supramolecular polymers. The cocrystal formed between 3,5-diethynylpyridine and N -bromosuccinimide (C 4 H 4 BrNO 2 ·C 9 H 5 N) is isomorphous to the cocrystal formed between 3,5-diethynylpyridine and N -iodosuccinimide, with a Br...N halogen bond instead of an I...N halogen bond.
    Free, publicly-accessible full text available July 1, 2023
  2. The treatment of 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine with a threefold excess of 1,2,3,5-tetrafluoro-4,6-diiodobenzene in dichloromethane solution led to the formation of the unexpected 1:2 title co-crystal, C 14 H 13 N 3 ·2CF 4 I 2 . In the extended structure, two unique C—I...N halogen bonds from one of the 1,2,3,5-tetrafluoro-4,6-diiodobenzene molecules to the pyrimidine N atoms of the 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine molecule generate [110] chains and layers of these chains are π-stacked along the a- axis direction. The second 1,2,3,5-tetrafluoro-4,6-diiodobenzene molecule resides in channels formed parallel to the a -axis direction between stacks of 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine molecules and interacts with them via C—I...π(alkyne) contacts.
  3. This study expands and combines concepts from two of our earlier studies. One study reported the complementary halogen bonding and π-π charge transfer complexation observed between isomeric electron rich 4-N,N-dimethylaminophenylethynylpyridines and the electron poor halogen bond donor, 1-(3,5-dinitrophenylethynyl)-2,3,5,6-tetrafluoro-4-iodobenzene while the second study elaborated the ditopic halogen bonding of activated pyrimidines. Leveraging our understanding on the combination of these non-covalent interactions, we describe cocrystallization featuring ditopic halogen bonding and π-stacking. Specifically, red cocrystals are formed between the ditopic electron poor halogen bond donor 1-(3,5-dinitrophenylethynyl)-2,4,6-triflouro-3,5-diiodobenzene and each of electron rich pyrimidines 2- and 5-(4-N,N-dimethyl-aminophenylethynyl)pyrimidine. The X-ray single crystal structures of these cocrystals are described in terms of halogen bonding and electron donor-acceptor π-complexation. Computations confirm that the donor-acceptor π-stacking interactions are consistently stronger than the halogen bonding interactions and that there is cooperativity between π-stacking and halogen bonding in the crystals.
  4. We report the design, synthesis, and crystal structure of a conjugated aryleneethynyl molecule, 2-(2-{4,5-dimethoxy-2-[2-(2,3,4-trifluorophenyl)ethynyl]phenyl}ethynyl)-6-[2-(pyridin-2-yl)ethynyl]pyridine, C 30 H 17 F 3 N 2 O 2 , that adopts a planar rhombus conformation in the solid state. The molecule crystallizes in the space group P -1, with Z = 2, and features two intramolecular sp 2 -C—H...N hydrogen bonds that co-operatively hold the arylethynyl molecule in a rhombus conformation. The H atoms are activated towards hydrogen bonding since they are situated on a trifluorophenyl ring and the H...N distances are 2.470 (16) and 2.646 (16) Å, with C—H...N angles of 161.7 (2) and 164.7 (2)°, respectively. Molecular electrostatic potential calculations support the formation of C—H...N hydrogen bonds to the trifluorophenyl moiety. Hirshfeld surface analysis identifies a self-complementary C—H...O dimeric interaction between adjacent 1,2-dimethoxybenzene segments that is shown to be common in structures containing that moiety.
  5. null (Ed.)
  6. The potential of pyrimidines to serve as ditopic halogen-bond acceptors is explored. The halogen-bonded cocrystals formed from solutions of either 5,5′-bipyrimidine (C 8 H 6 N 4 ) or 1,2-bis(pyrimidin-5-yl)ethyne (C 10 H 6 N 4 ) and 2 molar equivalents of 1,3-diiodotetrafluorobenzene (C 6 F 4 I 2 ) have a 1:1 composition. Each pyrimidine moiety acts as a single halogen-bond acceptor and the bipyrimidines act as ditopic halogen-bond acceptors. In contrast, the activated pyrimidines 2- and 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine (C 14 H 13 N 3 ) are ditopic halogen-bond acceptors, and 1:1 halogen-bonded cocrystals are formed from 1:1 mixtures of each of the activated pyrimidines and either 1,2- or 1,3-diiodotetrafluorobenzene. A 1:1 cocrystal was also formed between 2-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene, while a 2:1 cocrystal was formed between 5-{[4-(dimethylamino)phenyl]ethynyl}pyrimidine and 1,4-diiodotetrafluorobenzene.