skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bowman, Judd D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Diffuse radio recombination lines (RRLs) in the Galaxy are possible foregrounds for redshifted 21 cm experiments. We use EDGES drift scans centered at −26.°7 decl. to characterize diffuse RRLs across the southern sky. We find that RRLs averaged over the large antenna beam (72° × 110°) reach minimum amplitudes of R.A. = 2–6 hr. In this region, the Cαabsorption amplitude is 33 ± 11 mK (1σ) averaged over 50–87 MHz (27 ≳z≳ 15 for the 21 cm line) and increases strongly as frequency decreases. Cβand Hαlines are consistent with no detection with amplitudes of 13 ± 14 and 12 ± 10 mK (1σ), respectively. At 108–124.5 MHz (z≈ 11) in the same region, we find no evidence for carbon or hydrogen lines at the noise level of 3.4 mK (1σ). Conservatively assuming that observed lines come broadly from the diffuse interstellar medium, as opposed to a few compact regions, these amplitudes provide upper limits on the intrinsic diffuse lines. The observations support expectations that Galactic RRLs can be neglected as significant foregrounds for a large region of sky until redshifted 21 cm experiments, particularly those targeting cosmic dawn, move beyond the detection phase. We fit models of the spectral dependence of the lines averaged over the large beam of EDGES, which may contain multiple line sources with possible line blending, and find that including degrees of freedom for expected smooth, frequency-dependent deviations from local thermodynamic equilibrium (LTE) is preferred over simple LTE assumptions for Cαand Hαlines. For Cαwe estimate departure coefficients 0.79 <bnβn< 4.5 along the inner Galactic plane and 0 <bnβn< 2.3 away from the inner Galactic plane. 
    more » « less
  2. ABSTRACT Next-generation aperture arrays are expected to consist of hundreds to thousands of antenna elements with substantial digital signal processing to handle large operating bandwidths of a few tens to hundreds of MHz. Conventionally, FX correlators are used as the primary signal processing unit of the interferometer. These correlators have computational costs that scale as $$\mathcal {O}(N^2)$$ for large arrays. An alternative imaging approach is implemented in the E-field Parallel Imaging Correlator (EPIC) that was recently deployed on the Long Wavelength Array station at the Sevilleta National Wildlife Refuge (LWA-SV) in New Mexico. EPIC uses a novel architecture that produces electric field or intensity images of the sky at the angular resolution of the array with full or partial polarization and the full spectral resolution of the channelizer. By eliminating the intermediate cross-correlation data products, the computational costs can be significantly lowered in comparison to a conventional FX or XF correlator from $$\mathcal {O}(N^2)$$ to $$\mathcal {O}(N \log N)$$ for dense (but otherwise arbitrary) array layouts. EPIC can also lower the output data rates by directly yielding polarimetric image products for science analysis. We have optimized EPIC and have now commissioned it at LWA-SV as a commensal all-sky imaging back-end that can potentially detect and localize sources of impulsive radio emission on millisecond timescales. In this article, we review the architecture of EPIC, describe code optimizations that improve performance, and present initial validations from commissioning observations. Comparisons between EPIC measurements and simultaneous beam-formed observations of bright sources show spectral-temporal structures in good agreement. 
    more » « less
  3. ABSTRACT Accurately accounting for spectral structure in spectrometer data induced by instrumental chromaticity on scales relevant for detection of the 21-cm signal is among the most significant challenges in global 21-cm signal analysis. In the publicly available Experiment to Detect the Global Epoch of Reionization Signature low-band data set, this complicating structure is suppressed using beam-factor-based chromaticity correction (BFCC), which works by dividing the data by a sky-map-weighted model of the spectral structure of the instrument beam. Several analyses of these data have employed models that start with the assumption that this correction is complete. However, while BFCC mitigates the impact of instrumental chromaticity on the data, given realistic assumptions regarding the spectral structure of the foregrounds, the correction is only partial. This complicates the interpretation of fits to the data with intrinsic sky models (models that assume no instrumental contribution to the spectral structure of the data). In this paper, we derive a BFCC data model from an analytical treatment of BFCC and demonstrate using simulated observations that, in contrast to using an intrinsic sky model for the data, the BFCC data model enables unbiased recovery of a simulated global 21-cm signal from beam-factor chromaticity-corrected data in the limit that the data are corrected with an error-free beam-factor model. 
    more » « less
  4. ABSTRACT We develop a Bayesian model that jointly constrains receiver calibration, foregrounds, and cosmic 21 cm signal for the EDGES global 21 cm experiment. This model simultaneously describes calibration data taken in the lab along with sky-data taken with the EDGES low-band antenna. We apply our model to the same data (both sky and calibration) used to report evidence for the first star formation in 2018. We find that receiver calibration does not contribute a significant uncertainty to the inferred cosmic signal ($$\lt 1{{\ \rm per\ cent}}$$), though our joint model is able to more robustly estimate the cosmic signal for foreground models that are otherwise too inflexible to describe the sky data. We identify the presence of a significant systematic in the calibration data, which is largely avoided in our analysis, but must be examined more closely in future work. Our likelihood provides a foundation for future analyses in which other instrumental systematics, such as beam corrections and reflection parameters, may be added in a modular manner. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. Abstract This paper presents the design and deployment of the Hydrogen Epoch of Reionization Array (HERA) phase II system. HERA is designed as a staged experiment targeting 21 cm emission measurements of the Epoch of Reionization. First results from the phase I array are published as of early 2022, and deployment of the phase II system is nearing completion. We describe the design of the phase II system and discuss progress on commissioning and future upgrades. As HERA is a designated Square Kilometre Array pathfinder instrument, we also show a number of “case studies” that investigate systematics seen while commissioning the phase II system, which may be of use in the design and operation of future arrays. Common pathologies are likely to manifest in similar ways across instruments, and many of these sources of contamination can be mitigated once the source is identified. 
    more » « less