Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The electric
E 1 and magneticM 1 dipole responses of the nucleus$$N=Z$$ Mg were investigated in an inelastic photon scattering experiment. The 13.0 MeV electrons, which were used to produce the unpolarised bremsstrahlung in the entrance channel of the$$^{24}$$ Mg($$^{24}$$ ) reaction, were delivered by the ELBE accelerator of the Helmholtz-Zentrum Dresden-Rossendorf. The collimated bremsstrahlung photons excited one$$\gamma ,\gamma ^{\prime }$$ , four$$J^{\pi }=1^-$$ , and six$$J^{\pi }=1^+$$ states in$$J^{\pi }=2^+$$ Mg. De-excitation$$^{24}$$ rays were detected using the four high-purity germanium detectors of the$$\gamma $$ ELBE setup, which is dedicated to nuclear resonance fluorescence experiments. In the energy region up to 13.0 MeV a total$$\gamma $$ is observed, but this$$B(M1)\uparrow = 2.7(3)~\mu _N^2$$ nucleus exhibits only marginal$$N=Z$$ E 1 strength of less than e$$\sum B(E1)\uparrow \le 0.61 \times 10^{-3}$$ fm$$^2 \, $$ . The$$^2$$ branching ratios in combination with the expected results from the Alaga rules demonstrate that$$B(\varPi 1, 1^{\pi }_i \rightarrow 2^+_1)/B(\varPi 1, 1^{\pi }_i \rightarrow 0^+_{gs})$$ K is a good approximative quantum number for Mg. The use of the known$$^{24}$$ strength and the measured$$\rho ^2(E0, 0^+_2 \rightarrow 0^+_{gs})$$ branching ratio of the 10.712 MeV$$B(M1, 1^+ \rightarrow 0^+_2)/B(M1, 1^+ \rightarrow 0^+_{gs})$$ level allows, in a two-state mixing model, an extraction of the difference$$1^+$$ between the prolate ground-state structure and shape-coexisting superdeformed structure built upon the 6432-keV$$\varDelta \beta _2^2$$ level.$$0^+_2$$