skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Boyd, Alexander D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Abstract Modern automatic speech recognition (ASR) systems are capable of impressive performance recognizing clean speech but struggle in noisy, multi-talker environments, commonly referred to as the “cocktail party problem.” In contrast, many human listeners can solve this problem, suggesting the existence of a solution in the brain. Here we present a novel approach that uses a brain inspired sound segregation algorithm (BOSSA) as a preprocessing step for a state-of-the-art ASR system (Whisper). We evaluated BOSSA’s impact on ASR accuracy in a spatialized multi-talker scene with one target speaker and two competing maskers, varying the difficulty of the task by changing the target-to-masker ratio. We found that median word error rate improved by up to 54% when the target-to-masker ratio was low. Our results indicate that brain-inspired algorithms have the potential to considerably enhance ASR accuracy in challenging multi-talker scenarios without the need for retraining or fine-tuning existing state-of-the-art ASR systems. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026