skip to main content


Search for: All records

Creators/Authors contains: "Boyd, Philip W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Microbial community dynamics on sinking particles control the amount of carbon that reaches the deep ocean and the length of time that carbon is stored, with potentially profound impacts on Earth’s climate. A mechanistic understanding of the controls on sinking particle distributions has been hindered by limited depth- and time-resolved sampling and methods that cannot distinguish individual particles. Here, we analyze microbial communities on nearly 400 individual sinking particles in conjunction with more conventional composite particle samples to determine how particle colonization and community assembly might control carbon sequestration in the deep ocean. We observed community succession with corresponding changes in microbial metabolic potential on the larger sinking particles transporting a significant fraction of carbon to the deep sea. Microbial community richness decreased as particles aged and sank; however, richness increased with particle size and the attenuation of carbon export. This suggests that the theory of island biogeography applies to sinking marine particles. Changes in POC flux attenuation with time and microbial community composition with depth were reproduced in a mechanistic ecosystem model that reflected a range of POC labilities and microbial growth rates. Our results highlight microbial community dynamics and processes on individual sinking particles, the isolation of which is necessary to improve mechanistic models of ocean carbon uptake.

     
    more » « less
  2. Makhalanyane, Thulani P. (Ed.)

    The biology and ecology of marine microbial eukaryotes is known to be constrained by oceanic conditions. In contrast, how viruses that infect this important group of organisms respond to environmental change is less well known, despite viruses being recognized as key microbial community members.

     
    more » « less
  3. Dolan, John (Ed.)
    Abstract The necessity to understand the influence of global ocean change on biota has exposed wide-ranging gaps in our knowledge of the fundamental principles that underpin marine life. Concurrently, physiological research has stagnated, in part driven by the advent and rapid evolution of molecular biological techniques, such that they now influence all lines of enquiry in biological oceanography. This dominance has led to an implicit assumption that physiology is outmoded, and advocacy that ecological and biogeochemical models can be directly informed by omics. However, the main modeling currencies are biological rates and biogeochemical fluxes. Here, we ask: how do we translate the wealth of information on physiological potential from omics-based studies to quantifiable physiological rates and, ultimately, to biogeochemical fluxes? Based on the trajectory of the state-of-the-art in biomedical sciences, along with case-studies from ocean sciences, we conclude that it is unlikely that omics can provide such rates in the coming decade. Thus, while physiological rates will continue to be central to providing projections of global change biology, we must revisit the metrics we rely upon. We advocate for the co-design of a new generation of rate measurements that better link the benefits of omics and physiology. 
    more » « less
  4. Abstract

    The trace metal iron (Fe) controls the diversity and activity of phytoplankton across the surface oceans, a paradigm established through decades of in situ and mesocosm experimental studies. Despite widespread Fe-limitation within high-nutrient, low chlorophyll (HNLC) waters, significant contributions of the cyanobacterium Synechococcus to the phytoplankton stock can be found. Correlations among differing strains of Synechococcus across different Fe-regimes have suggested the existence of Fe-adapted ecotypes. However, experimental evidence of high- versus low-Fe adapted strains of Synechococcus is lacking, and so we investigated the transcriptional responses of microbial communities inhabiting the HNLC, sub-Antarctic region of the Southern Ocean during the Spring of 2018. Analysis of metatranscriptomes generated from on-deck incubation experiments reflecting a gradient of Fe-availabilities reveal transcriptomic signatures indicative of co-occurring Synechococcus ecotypes adapted to differing Fe-regimes. Functional analyses comparing low-Fe and high-Fe conditions point to various Fe-acquisition mechanisms that may allow persistence of low-Fe adapted Synechococcus under Fe-limitation. Comparison of in situ surface conditions to the Fe-titrations indicate ecological relevance of these mechanisms as well as persistence of both putative ecotypes within this region. This Fe-titration approach, combined with transcriptomics, highlights the short-term responses of the in situ phytoplankton community to Fe-availability that are often overlooked by examining genomic content or bulk physiological responses alone. These findings expand our knowledge about how phytoplankton in HNLC Southern Ocean waters adapt and respond to changing Fe supply.

     
    more » « less
  5. Abstract

    Ocean phytoplankton play a critical role in the global carbon cycle, contributing ∼50% of global photosynthesis. As planktonic organisms, phytoplankton encounter significant environmental variability as they are advected throughout the ocean. How this variability impacts phytoplankton growth rates and population dynamics remains unclear. Here, we systematically investigated the impact of different rates and magnitudes of sea surface temperature (SST) variability on phytoplankton community growth rates using surface drifter observations from the Southern Ocean (>30°S) and a phenotype‐based ecosystem model. Short‐term SST variability (<7 days) had a minimal impact on phytoplankton community growth rates. Moderate SST changes of 3–4°C over 7–45 days produced a large time lag between the temperature change and the biological response. The impact of SST variability on community growth rates was nonlinear and a function of the rate and magnitude of change. Additionally, the nature of variability generated in a Lagrangian reference frame (following trajectories of surface water parcels) was larger than that within an Eulerian reference frame (fixed point), which initiated different phytoplankton responses between the two reference frames. Finally, we found that these dynamics were not captured by the Eppley growth model commonly used in global biogeochemical models and resulted in an overestimation of community growth rates, particularly in dynamic, strong frontal regions of the Southern Ocean. This work demonstrates that the timescale for environmental selection (community replacement) is a critical factor in determining community composition and takes a first step towards including the impact of variability and biological response times into biogeochemical models.

     
    more » « less
  6. Surface ocean phosphate is commonly below the standard analytical detection limits, leading to an incomplete picture of the global variation and biogeochemical role of phosphate. A global compilation of phosphate measured using high-sensitivity methods revealed several previously unrecognized low-phosphate areas and clear regional differences. Both observational climatologies and Earth system models (ESMs) systematically overestimated surface phosphate. Furthermore, ESMs misrepresented the relationships between phosphate, phytoplankton biomass, and primary productivity. Atmospheric iron input and nitrogen fixation are known important controls on surface phosphate, but model simulations showed that differences in the iron-to-macronutrient ratio in the vertical nutrient supply and surface lateral transport are additional drivers of phosphate concentrations. Our study demonstrates the importance of accurately quantifying nutrients for understanding the regulation of ocean ecosystems and biogeochemistry now and under future climate conditions. 
    more » « less