- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
03000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Boyer, K. E. (3)
-
Min, W. (3)
-
Mott, B. (3)
-
Wiebe, E. (3)
-
& Lester, J. (2)
-
Park, K. (2)
-
Akram, B. (1)
-
Lester, J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Park, K. ; Mott, B. ; Min, W. ; Wiebe, E. ; Boyer, K. E. ; & Lester, J. ( , International Conference on Artificial Intelligence in Education)null (Ed.)
-
Akram, B. ; Min, W. ; Wiebe, E. ; Mott, B. ; Boyer, K. E. ; Lester, J. ( , International Conference on Educational Data Mining)A key affordance of game-based learning environments is their potential to unobtrusively assess student learning without interfering with gameplay. In this paper, we introduce a temporal analytics framework for stealth assessment that analyzes students' problem-solving strategies. The strategy-based temporal analytic framework uses long short-term memory network-based evidence models and clusters sequences of students' problem-solving behaviors across consecutive tasks. We investigate this strategy based temporal analytics framework on a dataset of problem solving behaviors collected from student interactions with a game-based learning environment for middle school computational thinking. The results of an evaluation indicate that the strategy-based temporal analytics framework significantly outperforms competitive baseline models with respect to stealth assessment predictive accuracy.more » « less