skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bradford, Nora"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chakraborty, Pinaki (Ed.)
    Social chatbots are aimed at building emotional bonds with users, and thus it is particularly important to design these technologies so as to elicit positive perceptions from users. In the current study, we investigate the impacts that transparent explanations of chatbots’ mechanisms have on users’ perceptions of the chatbots. A total of 914 participants were recruited from Amazon Mechanical Turk. They were randomly assigned to observe conversations between a hypothetical chatbot and a user in one of the two-by-two experimental conditions: whether the participants received an explanation about how the chatbot was trained and whether the chatbot was framed as an intelligent entity or a machine. A fifth group, who believed they were observing interactions between two humans, served as a control. Analyses of participants’ responses to the postobservation survey indicated that transparency positively affected perceptions of social chatbots by leading users to (1) find the chatbot less creepy, (2) feel greater affinity to the chatbot, and (3) perceive the chatbot as more socially intelligent, though these effects were small. Moreover, transparency appeared to have a larger effect on increasing the perceived social intelligence among participants with lower prior AI knowledge. These findings have implications for the design of future social chatbots and support the addition of transparency and explanation for chatbot users. 
    more » « less
  2. Question answering (QA) is a fundamental means to facilitate assessment and training of narrative comprehension skills for both machines and young children, yet there is scarcity of high-quality QA datasets carefully designed to serve this purpose. In particular, existing datasets rarely distinguish fine-grained reading skills, such as the understanding of varying narrative elements. Drawing on the reading education research, we introduce FairytaleQA, a dataset focusing on narrative comprehension of kindergarten to eighth-grade students. Generated by educational experts based on an evidence-based theoretical framework, FairytaleQA consists of 10,580 explicit and implicit questions derived from 278 children-friendly stories, covering seven types of narrative elements or relations. Our dataset is valuable in two folds: First, we ran existing QA models on our dataset and confirmed that this annotation helps assess models’ fine-grained learning skills. Second, the dataset supports question generation (QG) task in the education domain. Through benchmarking with QG models, we show that the QG model trained on FairytaleQA is capable of asking high-quality and more diverse questions. 
    more » « less