skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brady, Seán G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification. 
    more » « less
  2. null (Ed.)
    Abstract Background Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species’ galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories. Results Our reconstructed evolutionary history for Cynipoidea differs considerably from previous hypotheses. Rooting our analyses with non-cynipoid outgroups, the Paraulacini, a group of inquilines, emerged as sister-group to the rest of Cynipoidea, rendering the gall wasp family Cynipidae paraphyletic. The families Ibaliidae and Liopteridae, long considered archaic and early-branching parasitoid lineages, were found nested well within the Cynipoidea as sister-group to the parasitoid Figitidae. Cynipoidea originated in the early Jurassic around 190 Ma. Either inquilinism or parasitoidism is suggested as the ancestral and dominant strategy throughout the early evolution of cynipoids, depending on whether a simple (three states: parasitoidism, inquilinism and galling) or more complex (seven states: parasitoidism, inquilinism and galling split by host use) model is employed. Conclusions Our study has significant impact on understanding cynipoid evolution and highlights the importance of adequate outgroup sampling. We discuss the evolutionary timescale of the superfamily in relation to their insect hosts and host plants, and outline how phytophagous galling behavior may have evolved from entomophagous, parasitoid cynipoids. Our study has established the framework for further physiological and comparative genomic work between gall-making, inquiline and parasitoid lineages, which could also have significant implications for the evolution of diverse life histories in other Hymenoptera. 
    more » « less
  3. Abstract AimThe standard latitudinal diversity gradient (LDG), in which species richness decreases from equator to pole, is a pervasive pattern observed in most organisms. Some lineages, however, exhibit inverse LDGs. Seemingly problematic, documenting and studying contrarian groups can advance understanding of LDGs generally. Here, we identify one such contrarian clade and use a historical approach to evaluate alternative hypotheses that might explain the group's atypical diversity pattern. We focus on the biogeographical conservatism hypothesis (BCH) and the diversification rate hypothesis (DRH). LocationGlobal. TaxonAnts (Hymenoptera: Formicidae: Stenammini). MethodsWe examined the shape of the LDG in Stenammini by plotting latitudinal midpoints for all extant, described species. We inferred a robust genome‐scale phylogeny using UCE data. We estimated divergence dates using beast2 and tested several biogeographical models inBioGeoBEARS. To examine diversification rates and test for a correlation between rate and latitude, we used the programs BAMM and STRAPP, respectively. ResultsStenammini has a skewed inverse LDG with a richness peak in the northern temperate zone. Phylogenomic analyses revealed five major clades and several instances of non‐monophyly among genera (Goniomma,Aphaenogaster). Stenammini and all its major lineages arose in the northern temperate zone. The tribe originated ~51 Ma during a climatic optimum and then diversified and dispersed southward as global climate cooled. Stenammini invaded the tropics at least seven times, but these events occurred more recently and were not linked with increased diversification. There is evidence for a diversification rate increase in HolarcticAphaenogaster + Messor, but we found no significant correlation between latitude and diversification rate generally. Main ConclusionsOur results largely support the BCH as an explanation for the inverse latitudinal gradient in Stenammini. The clade originated in the Holarctic and likely became more diverse there due to center‐of‐origin, time‐for‐speciation and niche conservatism effects, rather than latitudinal differences in diversification rate. 
    more » « less