skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Brandmeir, Nicholas_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A central challenge in face perception research is to understand how neurons encode face identities. This challenge has not been met largely due to the lack of simultaneous access to the entire face processing neural network and the lack of a comprehensive multifaceted model capable of characterizing a large number of facial features. Here, we addressed this challenge by conducting in silico experiments using a pre-trained face recognition deep neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units selective to face identities, and these identity-selective units demonstrated generalized discriminability to novel faces. Visualization and manipulation of the network revealed the importance of identity-selective units in face recognition. Importantly, using our monkey and human single-neuron recordings, we directly compared the response of artificial units with real primate neurons to the same stimuli and found that artificial units shared a similar representation of facial features as primate neurons. We also observed a region-based feature coding mechanism in DNN units as in human neurons. Together, by directly linking between artificial and primate neural systems, our results shed light on how the primate brain performs face recognition tasks.

     
    more » « less
  2. Abstract

    Faces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.

     
    more » « less