skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Brando, Paulo M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2023
  2. Abstract The Amazon biome is being pushed by unsustainable economic drivers towards an ecological tipping point where restoration to its previous state may no longer be possible. This degradation is the result of self-reinforcing interactions between deforestation, climate change and fire. We assess the economic, natural capital and ecosystem services impacts and trade-offs of scenarios representing movement towards an Amazon tipping point and strategies to avert one using the Integrated Economic-Environmental Modeling (IEEM) Platform linked with spatial land use-land cover change and ecosystem services modeling (IEEM + ESM). Our approach provides the first approximation of the economic, natural capital and ecosystem services impacts of a tipping point, and evidence to build the economic case for strategies to avert it. For the five Amazon focal countries, namely, Brazil, Peru, Colombia, Bolivia and Ecuador, we find that a tipping point would create economic losses of US$256.6 billion in cumulative gross domestic product by 2050. Policies that would contribute to averting a tipping point, including strongly reducing deforestation, investing in intensifying agriculture in cleared lands, climate-adapted agriculture and improving fire management, would generate approximately US$339.3 billion in additional wealth and a return on investment of US$29.5 billion. Quantifying the costs, benefits and trade-offs of policies to avert a tipping point in a transparent and replicable manner can support the design of regional development strategies for the Amazon biome, build the business case for action and catalyze global cooperation and financing to enable policy implementation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2023
  3. Abstract

    Biophysical effects from deforestation have the potential to amplify carbon losses but are often neglected in carbon accounting systems. Here we use both Earth system model simulations and satellite–derived estimates of aboveground biomass to assess losses of vegetation carbon caused by the influence of tropical deforestation on regional climate across different continents. In the Amazon, warming and drying arising from deforestation result in an additional 5.1 ± 3.7% loss of aboveground biomass. Biophysical effects also amplify carbon losses in the Congo (3.8 ± 2.5%) but do not lead to significant additional carbon losses in tropical Asia due to its high levels of annual mean precipitation. These findings indicate that tropical forests may be undervalued in carbon accounting systems that neglect climate feedbacks from surface biophysical changes and that the positive carbon–climate feedback from deforestation-driven climate change is higher than the feedback originating from fossil fuel emissions.

     
    more » « less
  4. Abstract The contemporary fire regime of southern Amazonian forests has been dominated by interactions between droughts and sources of fire ignition associated with deforestation and slash-and-burn agriculture. Until recently, wildfires have been concentrated mostly on private properties, with protected areas functioning as large-scale firebreaks along the Amazon’s agricultural frontier. However, as the climate changes, protected forests have become increasingly flammable. Here, we have quantified forest degradation in the Território Indígena do Xingu (TIX), an iconic area of 2.8 million hectares where over 6000 people from 16 different ethnic Indigenous groups live across 100 villages. Our main hypothesis was that forest degradation, defined here as areas with lower canopy cover, inside the TIX is increasing due to pervasive sources of fire ignition, more frequent extreme drought events, and changing slash-and-burn agricultural practices. Between 2001 and 2020, nearly 189 000 hectares (∼7%) of the TIX became degraded by recurrent drought and fire events that were the main factors driving forest degradation, particularly in seasonally flooded forests. After three fire events, the probability of forest loss was higher in seasonally flooded areas (63%) compared to upland areas (41%). Given the same fire frequency, areas that have not suffered with extreme droughts showed a 24% lower probability of forest loss compared to areas that experienced three drought events. Distance from villages and human density also had a marked effect on forest cover loss, which was generally higher in areas close to the largest villages. In one of the most culturally diverse Indigenous lands of the Amazon, in a landscape highly threatened by deforestation, our findings demonstrate that climate change may have already exceeded the conditions to which the system has adapted. 
    more » « less
  5. null (Ed.)
    Carbon losses from forest degradation and disturbances are significant and growing sources of emissions in the Brazilian Amazon. Between 2003 and 2019, degradation and disturbance accounted for 44% of forest carbon losses in the region, compared with 56% from deforestation (forest clearing). We found that land tenure played a decisive role in explaining these carbon losses, with Undesignated Public Forests and Other Lands (e.g., private properties) accounting for the majority (82%) of losses during the study period. Illegal deforestation and land grabbing in Undesignated Public Forests widespread and increasingly are important drivers of forest carbon emissions from the region. In contrast, indigenous Territories and Protected Natural Areas had the lowest emissions, demonstrating their effectiveness in preventing deforestation and maintaining carbon stocks. These trends underscore the urgent need to develop reliable systems for monitoring and reporting on carbon losses from forest degradation and disturbance. Together with improved governance, such actions will be crucial for Brazil to reduce pressure on standing forests; strengthen Indigenous land rights; and design effective climate mitigation strategies needed to achieve its national and international climate commitments. 
    more » « less
  6. null (Ed.)
  7. Droughts can exert a strong influence on the regional energy balance of the Amazon and Cerrado, as can the replacement of native vegetation by croplands. What remains unclear is how these two forcing factors interact and whether land cover changes fundamentally alter the sensitivity of the energy balance components to drought events. To fill this gap, we used remote sensing data to evaluate the impacts of drought on evapotranspiration (ET), land surface temperature (LST), and albedo on cultivated areas, savannas, and forests. Our results (for seasonal drought) indicate that increases in monthly dryness across Mato Grosso state (southern Amazonia and northern Cerrado) drive greater increases in LST and albedo in croplands than in forests. Furthermore, during the 2007 and 2010 droughts, croplands became hotter (0.1–0.8 °C) than savannas (0.3–0.6 °C) and forests (0.2–0.3 °C). However, forest ET was consistently higher than ET in all other land uses. This finding likely indicates that forests can access deeper soil water during droughts. Overall, our findings suggest that forest remnants can play a fundamental role in the mitigation of the negative impacts of extreme drought events, contributing to a higher ET and lower LST. 
    more » « less
  8. null (Ed.)
    Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079–189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3–85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253–10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon. 
    more » « less