skip to main content

Search for: All records

Creators/Authors contains: "Brandt, W. N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Modern and future surveys effectively provide a panchromatic view for large numbers of extragalactic objects. Consistently modeling these multiwavelength survey data is a critical but challenging task for extragalactic studies. The Code Investigating GALaxy Emission ( cigale ) is an efficient python code for spectral energy distribution (SED) fitting of galaxies and active galactic nuclei (AGNs). Recently, a major extension of cigale (named x-cigale ) has been developed to account for AGN/galaxy X-ray emission and improve AGN modeling at UV-to-IR wavelengths. Here, we apply x-cigale to different samples, including Cosmological Evolution Survey (COSMOS) spectroscopic type 2 AGNs, Chandra Deep Field-South X-ray detected normal galaxies, Sloan Digital Sky Survey quasars, and COSMOS radio objects. From these tests, we identify several weaknesses of x-cigale and improve the code accordingly. These improvements are mainly related to AGN intrinsic X-ray anisotropy, X-ray binary emission, AGN accretion-disk SED shape, and AGN radio emission. These updates improve the fit quality and allow for new interpretation of the results, based on which we discuss physical implications. For example, we find that AGN intrinsic X-ray anisotropy is moderate, and can be modeled as L X ( θ ) ∝ 1 + cos θ , where θ ismore »the viewing angle measured from the AGN axis. We merge the new code into the major branch of cigale , and publicly release this new version as cigale v2022.0 on .« less
    Free, publicly-accessible full text available March 1, 2023
  2. Abstract The luminosity function of active galactic nuclei (AGN) probes the history of supermassive black hole assembly and growth across cosmic time. To mitigate selection biases, we present a consistent analysis of the AGN luminosity functions (LFs) derived for both X-ray and mid-infrared (MIR) selected AGN in the XMM-Large Scale Structure field. There are 4268 AGN used to construct the MIR luminosity function (IRLF) and 3427 AGN used to construct the X-ray luminosity function (XLF), providing the largest census of the AGN population out to z = 4 in both bands with significant reduction in uncertainties. We are able for the first time to see the knee of the IRLF at z > 2 and observe a flattening of the faint-end slope as redshift increases. The bolometric luminosity density, a proxy for the cosmic black hole accretion history, computed from our LFs, shows a peak at z ≈ 2.25, consistent with recent estimates of the peak in the star formation rate density (SFRD). However, at earlier epochs, the AGN luminosity density is flatter than the SFRD. If confirmed, this result suggests that the build up of black hole mass outpaces the growth of stellar mass in high-mass systems at zmore »≳ 2.5. This is consistent with observations of redshift z ∼ 6 quasars that lie above the local M − σ relationship. The luminosity density derived from the IRLF is higher than that from the XLF at all redshifts. This is consistent with the dominant role of obscured AGN activity in the cosmic growth of supermassive black holes.« less
    Free, publicly-accessible full text available January 1, 2023
  3. Abstract We present accretion-disk structure measurements from UV–optical reverberation mapping (RM) observations of a sample of eight quasars at 0.24 < z < 0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multiband optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping project sample with reliable black hole mass measurements from H β RM results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov Chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and Fe ii lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV–optical lags to the disk sizes inferred from optical–optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of themore »broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response.« less
    Free, publicly-accessible full text available February 1, 2023
  4. Context. In November 2019, eROSITA on board of the Spektrum-Roentgen-Gamma (SRG) observatory started to map the entire sky in X-rays. After the four-year survey program, it will reach a flux limit that is about 25 times deeper than ROSAT. During the SRG performance verification phase, eROSITA observed a contiguous 140 deg 2 area of the sky down to the final depth of the eROSITA all-sky survey (eROSITA Final Equatorial-Depth Survey; eFEDS), with the goal of obtaining a census of the X-ray emitting populations (stars, compact objects, galaxies, clusters of galaxies, and active galactic nuclei) that will be discovered over the entire sky. Aims. This paper presents the identification of the counterparts to the point sources detected in eFEDS in the main and hard samples and their multi-wavelength properties, including redshift. Methods. To identifyy the counterparts, we combined the results from two independent methods ( NWAY and ASTROMATCH ), trained on the multi-wavelength properties of a sample of 23k XMM-Newton sources detected in the DESI Legacy Imaging Survey DR8. Then spectroscopic redshifts and photometry from ancillary surveys were collated to compute photometric redshifts. Results. Of the eFEDS sources, 24 774 of 27 369 have reliable counterparts (90.5%) in the main samplemore »and 231 of 246 sourcess (93.9%) have counterparts in the hard sample, including 2514 (3) sources for which a second counterpart is equally likely. By means of reliable spectra, Gaia parallaxes, and/or multi-wavelength properties, we have classified the reliable counterparts in both samples into Galactic (2695) and extragalactic sources (22 079). For about 340 of the extragalactic sources, we cannot rule out the possibility that they are unresolved clusters or belong to clusters. Inspection of the distributions of the X-ray sources in various optical/IR colour-magnitude spaces reveal a rich variety of diverse classes of objects. The photometric redshifts are most reliable within the KiDS/VIKING area, where deep near-infrared data are also available. Conclusions. This paper accompanies the eROSITA early data release of all the observations performed during the performance and verification phase. Together with the catalogues of primary and secondary counterparts to the main and hard samples of the eFEDS survey, this paper releases their multi-wavelength properties and redshifts.« less
    Free, publicly-accessible full text available May 1, 2023