skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bredas, Jean‐Luc"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Perovskite solar cells in which 2D perovskites are incorporated within a 3D perovskite network exhibit improved stability with respect to purely 3D systems, but lower record power conversion efficiencies (PCEs). Here, a breakthrough is reported in achieving enhanced PCEs, increased stability, and suppressed photocurrent hysteresis by incorporating n‐type, low‐optical‐gap conjugated organic molecules into 2D:3D mixed perovskite composites. The resulting ternary perovskite–organic composites display extended absorption in the near‐infrared region, improved film morphology, enlarged crystallinity, balanced charge transport, efficient photoinduced charge transfer, and suppressed counter‐ion movement. As a result, the ternary perovskite–organic solar cells exhibit PCEs over 23%, which are among the best PCEs for perovskite solar cells with p–i–n device structure. Moreover, the ternary perovskite–organic solar cells possess dramatically enhanced stability and diminished photocurrent hysteresis. All these results demonstrate that the strategy of exploiting ternary perovskite–organic composite thin films provides a facile way to realize high‐performance perovskite solar cells. 
    more » « less