skip to main content


Search for: All records

Creators/Authors contains: "Breeden, Melissa L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Stratosphere-to-troposphere transport (STT) is an important sourceof ozone for the troposphere, particularly over western North America. STTin this region is predominantly controlled by a combination of thevariability and location of the Pacific jet stream and the amount of ozonein the lower stratosphere, two factors which are likely to change ifgreenhouse gas concentrations continue to increase. Here we use WholeAtmosphere Community Climate Model experiments with a tracer ofstratospheric ozone (O3S) to study how end-of-the-century RepresentativeConcentration Pathway (RCP) 8.5 sea surface temperatures (SSTs) andgreenhouse gases (GHGs), in isolation and in combination, influence STT ofozone over western North America relative to a preindustrial controlbackground state. We find that O3S increases by up to 37 % during late winter at 700 hPaover western North America in response to RCP8.5 forcing, with the increasestapering off somewhat during spring and summer. When this response to RCP8.5greenhouse gas forcing is decomposed into the contributions made by futureSSTs alone versus future GHGs alone, the latter are found to be primarilyresponsible for these O3S changes. Both the future SSTs alone and the futureGHGs alone accelerate the Brewer–Dobson circulation, which modifiesextratropical lower-stratospheric ozone mixing ratios. While the future GHGsalone promote a more zonally symmetric lower-stratospheric ozone change dueto enhanced ozone production and some transport, the future SSTs aloneincrease lower-stratospheric ozone predominantly over the North Pacific viatransport associated with a stationary planetary-scale wave. Ozoneaccumulates in the trough of this anomalous wave and is reduced over thewave's ridges, illustrating that the composition of the lower-stratosphericozone reservoir in the future is dependent on the phase and position of thestationary planetary-scale wave response to future SSTs alone, in additionto the poleward mass transport provided by the accelerated Brewer–Dobsoncirculation. Further, the future SSTs alone account for most changes to thelarge-scale circulation in the troposphere and stratosphere compared to theeffect of future GHGs alone. These changes include modifying the positionand speed of the future North Pacific jet, lifting the tropopause,accelerating both the Brewer–Dobson circulation's shallow and deep branches,and enhancing two-way isentropic mixing in the stratosphere. 
    more » « less
  2. Abstract. The El Niño–Southern Oscillation (ENSO) is known to modulate the strength and frequency of stratosphere-to-troposphere transport (STT) of ozone over the Pacific–North American region during late winter to early summer. Dynamical processes that have been proposed to account for this variability include variations in the amount of ozone in the lowermoststratosphere that is available for STT and tropospheric circulation-relatedvariations in the frequency and geographic distribution of individual STTevents. Here we use a large ensemble of Whole Atmosphere Community Climate Model(WACCM) simulations (forced by sea-surface temperature (SST) boundaryconditions consistent with each phase of ENSO) to show that variability inlower-stratospheric ozone and shifts in the Pacific tropospheric jetconstructively contribute to the amount of STT of ozone in the NorthAmerican region during both ENSO phases. In terms of stratosphericvariability, ENSO drives ozone anomalies resembling the Pacific–NorthAmerican teleconnection pattern that span much of the lower stratospherebelow 50 hPa. These ozone anomalies, which dominate over other ENSO-drivenchanges in the Brewer–Dobson circulation (including changes due to both thestratospheric residual circulation and quasi-isentropic mixing), stronglymodulate the amount of ozone available for STT transport. As a result,during late winter (February–March), the stratospheric ozone response to theteleconnections constructively reinforces anomalous ENSO-jet-driven STT ofozone. However, as ENSO forcing weakens as spring progresses into summer(April–June), the direct effects of the ENSO-jet-driven STT transportweaken. Nevertheless, the residual impacts of the teleconnections on theamount of ozone in the lower stratosphere persist, and these anomalies inturn continue to cause anomalous STT of ozone. These results should provehelpful for interpreting the utility of ENSO as a subseasonal predictor ofboth free-tropospheric ozone and the probability of stratospheric ozoneintrusion events that may cause exceedances in surface air qualitystandards. 
    more » « less
  3. null (Ed.)
    Abstract Previous research has found a relationship between the equatorward extent of snow cover and low-level baroclinicity, suggesting a link between the development and trajectory of midlatitude cyclones and the extent of preexisting snow cover. Midlatitude cyclones are more frequent 50–350 km south of the snow boundary, coincident with weak maxima in the environmental Eady growth rate. The snow line is projected to recede poleward with increasing greenhouse gas emissions, possibly affecting the development and track of midlatitude cyclones during Northern Hemisphere winter. Detailed examination of the physical implications of a modified snow boundary on the life cycle of individual storms has, to date, not been undertaken. This study investigates the impact of a receding snow boundary on two cyclogenesis events using Weather Research and Forecasting Model simulations initialized with observed and projected future changes to snow extent as a surface boundary condition. Potential vorticity diagnosis of the modified cyclone simulations isolates how changes in surface temperature, static stability, and relative vorticity arising from the altered boundary affect the developing cyclone. We find that the surface warm anomaly associated with snow removal lowered heights near the center of the two cyclones investigated, strengthening their cyclonic circulation. However, the direct effect of snow removal is mitigated by the stability response and an indirect relative vorticity response to snow removal. Because of these opposing effects, it is suggested that the immediate effect of receding snow cover on midlatitude cyclones is likely minimal and depends on the stage of the cyclone life cycle. 
    more » « less
  4. Abstract. Stratosphere-to-troposphere mass transport to the planetaryboundary layer (STT-PBL) peaks over the western United States during borealspring, when deep stratospheric intrusions are most frequent. Thetropopause-level jet structure modulates the frequency and character ofintrusions, although the precise relationship between STT-PBL and jetvariability has not been extensively investigated. In this study, wedemonstrate how the North Pacific jet transition from winter to summer leadsto the observed peak in STT-PBL. We show that the transition enhancesSTT-PBL through an increase in storm track activity which produceshighly amplified Rossby waves and more frequent deep stratosphericintrusions over western North America. This dynamic transition coincideswith the gradually deepening PBL, further facilitating STT-PBL in spring. Wefind that La Niña conditions in late winter are associated with anearlier jet transition and enhanced STT-PBL due to deeper and more frequenttropopause folds. An opposite response is found during El Niñoconditions. El Niño–SouthernOscillation (ENSO) conditions also influence STT-PBL in late spring or earlysummer, during which time La Niña conditions are associated with largerand more frequent tropopause folds than both El Niño and ENSO-neutralconditions. These results suggest that knowledge of ENSO state and the North Pacific jet structure in late winter could be leveraged for predicting thestrength of STT-PBL in the following months. 
    more » « less
  5. Abstract. Forecasts of Pacific jet variability are used to predictstratosphere-to-troposphere transport (STT) and tropical-to-extratropicalmoisture export (TME) during boreal spring over the Pacific–North Americanregion. A retrospective analysis first documents the regionality of STT andTME for different Pacific jet patterns. Using these results as a guide,Pacific jet hindcasts, based on zonal-wind forecasts from the European Centrefor Medium-Range Weather Forecasting Integrated Forecasting System, areutilized to test whether STT and TME over specific geographic regions may bepredictable for subseasonal forecast leads (3–6 weeks ahead of time). Largeanomalies in STT to the mid-troposphere over the North Pacific, TME to thewest coast of the United States, and TME over Japan are found to have the bestpotential for subseasonal predictability using upper-level wind forecasts. STTto the planetary boundary layer over the intermountain west of the UnitedStates is also potentially predictable for subseasonal leads but likely onlyin the context of shifts in the probability of extreme events. While STT andTME forecasts match verifications quite well in terms of spatial structure andanomaly sign, the number of anomalous transport days is underestimatedcompared to observations. The underestimation of the number of anomaloustransport days exhibits a strong seasonal cycle, which becomes steadily worseas spring progresses into summer. 
    more » « less
  6. Abstract

    Identifying the origins of wintertime climate variations in the Northern Hemisphere requires careful attribution of the role of El Niño–Southern Oscillation (ENSO). For example, Aleutian low variability arises from internal atmospheric dynamics and is remotely forced mainly via ENSO. How ENSO modifies the local sea surface temperature (SST) and North American precipitation responses to Aleutian low variability remains unclear, as teasing out the ENSO signal is difficult. This study utilizes carefully designed coupled model experiments to address this issue. In the absence of ENSO, a deeper Aleutian low drives a positive Pacific decadal oscillation (PDO)-like SST response. However, unlike the observed PDO pattern, a coherent zonal band of turbulent heat flux–driven warm SST anomalies develops throughout the subtropical North Pacific. Furthermore, non-ENSO Aleutian low variability is associated with a large-scale atmospheric circulation pattern confined over the North Pacific and North America and dry precipitation anomalies across the southeastern United States. When ENSO is included in the forcing of Aleutian low variability in the experiments, the ENSO teleconnection modulates the turbulent heat fluxes and damps the subtropical SST anomalies induced by non-ENSO Aleutian low variability. Inclusion of ENSO forcing results in wet precipitation anomalies across the southeastern United States, unlike when the Aleutian low is driven by non-ENSO sources. Hence, we find that the ENSO teleconnection acts to destructively interfere with the subtropical North Pacific SST and southeastern United States precipitation signals associated with non-ENSO Aleutian low variability.

     
    more » « less
  7. Abstract

    The Greenland Ice Sheet (GrIS) is losing mass at an increasing rate yet mass gain from snowfall still exceeds the loss attributed to surface melt processes on an annual basis. This work assesses the relationship between persistent atmospheric blocking across the Euro‐Atlantic region and enhanced precipitation processes over the central GrIS during June–August and September–November. Results show that the vast majority of snowfall events in the central GrIS coincide with Euro‐Atlantic blocking. During June–August, snowfall events are produced primarily by mixed‐phase clouds (88%) and are linked to a persistent blocking anticyclone over southern Greenland (84%). The blocking anticyclone slowly advects warm, moist air masses into western and southern Greenland, with positive temperature and water vapor anomalies that intensify over the central GrIS. A zonal integrated water vapor transport pattern south of Greenland indicates a southern shift of the North Atlantic storm track associated with the high‐latitude blocking. In contrast, snowfall events during September–November are largely produced by ice‐phase clouds (85%) and are associated with a blocking anticyclone over the Nordic Seas and blocked flow over northern Europe (78%). The blocking anticyclone deflects the westerly North Atlantic storm track poleward and enables the rapid transport of warm, moist air masses up the steep southeastern edge of the GrIS, with positive temperature and water vapor anomalies to the east and southeast of Greenland. These results emphasize the critical role of Euro‐Atlantic blocking in promoting snowfall processes over the central GrIS and the importance of accurate representation of blocking in climate model projections.

     
    more » « less