skip to main content

Search for: All records

Creators/Authors contains: "Brehm, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In past experiments, simulations and theoretical analysis, rotation has been shown to dramatically effect the characteristics of turbulent flows, such as causing the mean velocity profile to appear laminar, leading to an overall drag reduction, as well as affecting the Reynolds stress tensor. The axially rotating pipe is an exemplary prototypical model problem that exhibits these complex turbulent flow physics. For this flow, the rotation of the pipe causes a region of turbulence suppression which is particularly sensitive to the rotation rate and Reynolds number. The physical mechanisms causing turbulence suppression are currently not well-understood, and a deeper understanding of these mechanisms is of great value for many practical examples involving swirling or rotating flows, such as swirl generators, wing-tip vortices, axial compressors, hurricanes, etc. In this work, Direct Numerical Simulations (DNS) of rotating turbulent pipe flows are conducted at moderate Reynolds numbers (Re=5300, 11,700, and 19,000) and rotation numbers of N=0 to 3. The main objectives of this work are to firstly quantify turbulence suppression for rotating turbulent pipe flows at different Reynolds numbers as well as study the effects of rotation on turbulence by analyzing the characteristics of the Reynolds stress tensor and the production and dissipation terms of the turbulence budgets. 
    more » « less