skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bren, Kara L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Engineering metallobiocatalysts is a promising approach to addressing challenges in energy-relevant electrocatalysis and photocatalysis. The design freedom provided by semisynthetic and fully synthetic approaches to catalyst design allows researchers to demonstrate how structural modifications can improve selectivity and activity of biocatalysts. Furthermore, the provision of a superstructure in many metallobiocatalysts facilitates active-site microenvironment engineering. Recurring themes include the role of the biomolecular scaffold in enhancing reactivity in water and catalyst robustness, the impact of the outer sphere on reactivity, and the importance of tuning system components in full system optimization. In this perspective, recent strategies to design and modify novel biocatalysts, understand proton and electron transfer mechanisms, and tune system activity by modifying catalysts and system conditions are highlighted within the field of energy-related catalysis. Opportunities in this field include developing robust structure-function relationships to support approaches to engineering second-sphere interactions and identifying ways to enhance biocatalyst activity over time. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Metalloenzymes are remarkable for facilitating challenging redox transformations with high efficiency and selectivity. In the area of alternative energy, scientists aim to capture these properties in bioinspired and engineered biomolecular catalysts for the efficient and fast production of fuels from low‐energy feedstocks such as water and carbon dioxide. In this short review, efforts to mimic biological catalysts for proton reduction and carbon dioxide reduction are highlighted. Two important recurring themes are the importance of the microenvironment of the catalyst active site and the key role of proton delivery to the active site in achieving desired reactivity. Perspectives on ongoing and future challenges are also provided. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light‐driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light‐driven biocatalysis. In this mini‐review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2reduction, and N2reduction. 
    more » « less