skip to main content


Search for: All records

Creators/Authors contains: "Brenner, Benjamin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mitochondrial morphology provides unique insights into their integrity and function. Among fluorescence microscopy techniques, 3D super-resolution microscopy uniquely enables the analysis of mitochondrial morphological features individually. However, there is a lack of tools to extract morphological parameters from super-resolution images of mitochondria. We report a quantitative method to extract mitochondrial morphological metrics, including volume, aspect ratio, and local protein density, from 3D single-molecule localization microscopy images, with single-mitochondrion sensitivity. We validated our approach using simulated ground-truth SMLM images of mitochondria. We further tested our morphological analysis on mitochondria that have been altered functionally and morphologically in controlled manners. This work sets the stage to quantitatively analyze mitochondrial morphological alterations associated with disease progression on an individual basis.

     
    more » « less
  2. We developed a multiscale optical imaging workflow, integrating and correlating visible-light optical coherence tomography, confocal laser scanning microscopy, and single-molecule localization microscopy to investigate mouse cornea damage from thein-vivotissue level to the nanoscopic single-molecule level. We used electron microscopy to validate the imaged nanoscopic structures. We imaged wild-type mice and mice with acute ocular hypertension and examined the effects of Rho-kinase inhibitor application. We defined four types of intercellular tight junction structures as healthy, compact, partially-distorted, and fully-distorted types by labeling the zonula occludens-1 protein in the corneal endothelial cell layer. We correlated the statistics of the four types of tight junction structures with cornea thickness and intraocular pressure. We found that the population of fully-distorted tight junctions correlated well with the level of corneal edema, and applying Rho-kinase inhibitor reduced the population of fully-distorted tight junctions under acute ocular hypertension. Together, these data point to the utility of multiscale optical imaging in revealing fundamental biology relevant to disease and therapeutics.

     
    more » « less
  3. Abstract

    Single-molecule localization microscopy (SMLM) breaks the optical diffraction limit by numerically localizing sparse fluorescence emitters to achieve super-resolution imaging. Spectroscopic SMLM or sSMLM further allows simultaneous spectroscopy and super-resolution imaging of fluorescence molecules. Hence, sSMLM can extract spectral features with single-molecule sensitivity, higher precision, and higher multiplexity than traditional multicolor microscopy modalities. These new capabilities enabled advanced multiplexed and functional cellular imaging applications. While sSMLM suffers from reduced spatial precision compared to conventional SMLM due to splitting photons to form spatial and spectral images, several methods have been reported to mitigate these weaknesses through innovative optical design and image processing techniques. This review summarizes the recent progress in sSMLM, its applications, and our perspective on future work.

    Graphical Abstract

     
    more » « less
  4. By manipulating the spectral dispersion of detected photons, spectroscopic single-molecule localization microscopy (sSMLM) permits concurrent high-throughput single-molecular spectroscopic analysis and imaging. Despite its promising potential, using discrete optical components and managing the delicate balance between spectral dispersion and spatial localization compromise its performance, including non-uniform spectral dispersion, high transmission loss of grating, high optical alignment demands, and reduced precision. We designed a dual-wedge prism (DWP)-based monolithic imaging spectrometer to overcome these challenges. We optimized the DWP for spectrally dispersing focused beam without deviation and with minimal wavefront error. We integrated all components into a compact assembly, minimizing total transmission loss and significantly reducing optical alignment requirements. We show the feasibility of DWP using ray-tracing and numerical simulations. We validated our numerical simulations by experimentally imaging individual nanospheres and confirmed that DWP-sSMLM achieved much improved spatial and spectral precisions of grating-based sSMLM. We also demonstrated DWP-sSMLM in 3D multi-color imaging of cells. 
    more » « less
  5. Spectroscopic single-molecule localization microscopy (sSMLM) generates super-resolution images of single molecules while simultaneously capturing the spectra of their fluorescence emissions. However, sSMLM splits photons from single-molecule emissions into a spatial channel and a spectral channel, reducing both channels’ precisions. It is also challenging in transmission grating-based sSMLM to achieve a large field-of-view (FOV) and avoid overlap between the spatial and spectral channels. The challenge in FOV has further significance in single-molecule tracking applications. In this work, we analyzed the correlation between the spatial and spectral channels in sSMLM to improve its spatial precision, and we developed a split-mirror assembly to enlarge its FOV. We demonstrate the benefits of these improvements by tracking quantum dots. We also show that we can reduce particle-identification ambiguity by tagging each particle with its unique spectral characteristics.

     
    more » « less
  6. Abstract

    Spectroscopic single-molecule localization microscopy (sSMLM) was used to achieve simultaneous imaging and spectral analysis of single molecules for the first time. Current sSMLM fundamentally suffers from a reduced photon budget because the photons from individual stochastic emissions are divided into spatial and spectral channels. Therefore, both spatial localization and spectral analysis only use a portion of the total photons, leading to reduced precisions in both channels. To improve the spatial and spectral precisions, we present symmetrically dispersed sSMLM, or SDsSMLM, to fully utilize all photons from individual stochastic emissions in both spatial and spectral channels. SDsSMLM achieved 10-nm spatial and 0.8-nm spectral precisions at a total photon budget of 1000. Compared with the existing sSMLM using a 1:3 splitting ratio between spatial and spectral channels, SDsSMLM improved the spatial and spectral precisions by 42% and 10%, respectively, under the same photon budget. We also demonstrated multicolour imaging of fixed cells and three-dimensional single-particle tracking using SDsSMLM. SDsSMLM enables more precise spectroscopic single-molecule analysis in broader cell biology and material science applications.

     
    more » « less