skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brennessel, William W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 26, 2026
  2. Actinide doping enhances redox chemistry of polyoxomolybdate-alkoxide clusters; the first isolable U(v) polyoxometalate cluster is reported. 
    more » « less
  3. We investigate the anisotropic thermal expansion behavior of a co- crystalline system composed of 4,40-azopyridine and trimesic acid (TMA-azo). Using variable-temperature single-crystal X-ray diffrac- tion (SC-XRD), low-frequency Raman spectroscopy, and terahertz time-domain spectroscopy (THz-TDS), we observe significant temperature-induced shifting and broadening of the vibrational absorption features, indicating changes in the intermolecular potential. Our findings reveal that thermal expansion is driven by anharmonic interactions and the potential energy topography, rather than increased molecular dynamics. Density functional the- ory (DFT) simulations support these results, highlighting significant softening of the potential energy surface (PES) with temperature. This comprehensive approach offers valuable insights into the relationship between structural dynamics and thermal properties, providing a robust framework for designing materials with tailored thermal expansion characteristics. 
    more » « less
  4. Mononuclear Fe(iii) complexes containing an antipyrine Schiff base ligand were prepared and fully characterized, demonstrating a planar tetradentate coordination geometry. The resulting complexes are active for HER with possible ligand cooperativity. 
    more » « less
  5. “Goldilocks” affinity of K+for the POV surface stabilizes reduced form of assembly for improved cycling stability! 
    more » « less
  6. A hydrophobic metal–organic framework displays some of the largest selectivities known for adsorption of the fluorinated greenhouse gases CF4 and CHF3 over N2 
    more » « less
  7. A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, theU(IV) species are nonemissive. 
    more » « less
  8. Non-aqueous redox flow batteries constitute a promising solution for grid-scale energy storage due to the ability to achieve larger cell voltages than can be readily accessed in water. 
    more » « less
  9. Anionic dopants, such as O-atom vacancies, alter the thermochemical and kinetic parameters of proton coupled electron transfer (PCET) at metal oxide surfaces; understanding their impact(s) is essential for informed material design for efficient energy conversion processes. To circumvent challenges associated with studying extended solids, we employ polyoxovanadate–alkoxide clusters as atomically precise models of reducible metal oxide surfaces. In this work, we examine net hydrogen atom (H-atom) uptake to an oxygen deficient vanadium oxide assembly, [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 . Addition of two H-atom equivalents to [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 results in formation of [V 6 O 5 (MeCN)(OH 2 )(OCH 3 ) 12 ] 0 . Assessment of the bond dissociation free energy of the O–H bonds of the resultant aquo moiety reveals that the presence of an O-atom defect weakens the O–H bond strength. Despite a decreased thermodynamic driving force for the reduction of [V 6 O 6 (MeCN)(OCH 3 ) 12 ] 0 , kinetic investigations show the rate of H-atom uptake at the cluster surface is ∼100× faster than its oxidized congener, [V 6 O 7 (OCH 3 ) 12 ] 0 . Electron density derived from the O-atom vacancy is shown to play an important role in influencing H-atom uptake at the cluster surface, lowering activation barriers for H-atom transfer. 
    more » « less