skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brewer, Bruce"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We consider two restricted cases of the planar dynamic convex hull problem with point insertions and deletions. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case, which is more general, assumes that the points in the deque constitute a simple path. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in O(log n) time, where n is the number of points in the current point set. The convex hull of the current point set can be reported in O(h+log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal. 
    more » « less