skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brewer, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the in-lab and on-sky performance for the upgraded 90 GHz focal plane of the Cosmology Large Angular Scale Surveyor, which had four of its seven detector wafers updated during the austral winter of 2022. The update aimed to improve the transition-edge-sensor (TES) stability and bias range and to realize the high optical efficiency of the sensor design. Modifications included revised circuit terminations, electrical contact between the TES superconductor and the normal metal providing the bulk of the bolometer heat capacity, and additional filtering on the TES bias lines. The upgrade was successful: 94% of detectors are stable down to 15% of the normal resistance, providing a wide overlapping range of bias voltages for all TESs on a wafer. The median telescope efficiency improved from 0.4 2 0.22 + 0.15 to 0.6 0 0.32 + 0.10 (68% quantiles). For the four upgraded wafers alone, median telescope efficiency increased to 0.6 5 0.06 + 0.06 . Given our efficiency estimate for the receiver optics, this telescope efficiency implies a detector efficiency exceeding 0.90. The overall noise-equivalent temperature of the 90 GHz focal plane improved from 19 μ K s to 9.7 μ K s
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Derby, C (Ed.)
    Although the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group–housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms. 
    more » « less
  3. Abstract We present measurements of large-scale cosmic microwave backgroundE-mode polarization from the Cosmology Large Angular Scale Surveyor 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of 82 μ K arcmin , comparable to Planck at similar frequencies (100 and 143 GHz ). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making nonlinearity, being characterized as <3%. Through cross-correlation with Planck, we detected the cosmic reionization at 99.4% significance and measured the reionization optical depth τ = 0.05 3 0.019 + 0.018 , marking the first ground-based attempt at such a measurement. At intermediate angular scales (ℓ > 30), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck’s measurements. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  4. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    Front-end polarization modulation enables improved polarization measurement stability by modulating the targeted signal above the low-frequency $1/f$ drifts associated with atmospheric and instrumental instabilities and diminishes the impact of instrumental polarization. In this work, we present the design and characterization of a new 60-cm diameter Reflective Half-Wave Plate (RHWP) polarization modulator for the 90 GHz band telescope of the Cosmology Large Angular Scale Surveyor (CLASS) project. The RHWP consists of an array of parallel wires (diameter 50~µm, 175~µm pitch) positioned 0.88~mm from an aluminum mirror. In lab tests, it was confirmed that the wire resonance frequency ($$f_\mathrm{res}$$) profile is consistent with the target, $139$~Hz$$<154$$~Hz in the optically active region (diameter smaller than 150~mm), preventing the wire vibration during operation and reducing the RHWP deformation under the wire tension. The mirror tilt relative to the rotating axis was controlled to be $<15''$, corresponding to an increase in beam width due to beam smearing of < $0.6''$, %a beam smearing amplitude of $<0.6''$, negligible compared to the beam's full-width half-maximum of $36'$. The median and 16/84th percentile of the wire--mirror separation residual was $$0.048^{+0.013}_{-0.014}$$~mm in the optically active region, achieving a modulation efficiency $$\epsilon=96.2_{+0.5}^{-0.4}\%$$ with an estimated bandpass of 34~GHz. The angular velocity of the RHWP was maintained to an accuracy of within 0.005\% at the nominal rotation frequency (2.5~Hz). The RHWP has been successfully integrated into the CLASS 90 GHz telescope and started taking data in June 2024, replacing the previous modulator that has been in operation since June 2018. 
    more » « less
  5. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    Polarization modulation is a powerful technique to increase the stability of measurements by enabling the distinction of a polarized signal from dominant slow system drifts and unpolarized foregrounds. Furthermore, when placed as close to the sky as possible, modulation can reduce systematic errors from instrument polarization. In this work, we introduce the design and preliminary drive system laboratory performance of a new 60 cm diameter reflective half-wave plate (RHWP) polarization modulator. The wave plate consists of a wire array situated in front of a flat mirror. Using 50 μm diameter wires with 175 μm spacing, the wave plate will be suitable for operation in the millimeter wavelength range with flatness of the wires and parallelism to the mirror held to a small fraction of a wavelength. The presented design targets the 77-108 GHz range. Modulation is performed by a rotation of the wave plate with a custom rotary drive utilizing an actively controlled servo motor. 
    more » « less
  6. Zmuidzinas, Jonas; Gao, Jian-Rong (Ed.)
    The Cosmology Large Angular Scale Surveyor (CLASS) telescope array surveys 75% of the sky from the Atacama desert in Chile at frequency bands centered near 40, 90, 150, and 220 GHz. CLASS measures the largest-angular scale (θ ≳ 1 ° ) CMB polarization with the aim of constraining the tensor-to-scalar ratio, r, measuring the optical depth to reionization, τ , to near the cosmic variance limit, and more. The CLASS Q-band (40 GHz), W-band (90 GHz), and dichroic high frequency (150/220 GHz) telescopes have been observing since June 2016, May 2018, and September 2019, respectively. On-sky optical characterization of the 40 GHz instrument has been published. Here, we present preliminary on-sky measurements of the beams at 90, 150, and 220 GHz, and pointing stability of the 90 and 150/220 GHz telescopes. The average 90, 150, and 220 GHz beams measured from dedicated observations of Jupiter have full width at half maximum (FWHM) of 0.615±0.019° , 0.378±0.005° , and 0.266 ± 0.008° , respectively. Telescope pointing variations are within a few % of the beam FWHM. 
    more » « less
  7. The millipede Brachycybe lecontii Wood, 1864 is a fungivorous social millipede known for paternal care of eggs and forming multi-generational aggregations. We investigated the life history, paternal care, chemical defence, feeding and social behaviour of B. lecontii and provided morphological and anatomical descriptions, using light and scanning electron microscopy. Based on observations of B. lecontii from 13 locations throughout its distribution, we report the following natural history aspects. The oviposition period of B. lecontii lasted from mid-April to late June and the incubation period lasted 3–4 weeks. Only males cared for the eggs and subsequent care of juveniles was not observed. In one case, the clutches of two males became combined and they were later cared for by only one of the males. The defensive compound of B. lecontii is stored in large glands occupying a third of the paranotal volume and were observed only in stadia II millipedes and older. We observed B. lecontii feeding on fungi of the order Polyporales and describe a cuticular structure on the tip of the labrum that may relate to fungivory. We found that their stellate-shaped aggregations (pinwheels) do not form in the absence of fungus and suggest the aggregation is associated with feeding. We describe and illustrate a previously undescribed comb-like structure on the tibia and tarsi of the six anterior-most leg-pairs and measure the colour and spectral reflectance of the B. lecontii exoskeleton. 
    more » « less
  8. Abstract The current and future cosmic microwave background (CMB) experiments fielding kilopixel arrays of transition-edge sensor (TES) bolometers require accurate and robust gain calibration methods. We simplify and refactor the standard TES model to directly relate the detector responsivity calibration and optical time constant to the measured TES current I and the applied bias current I b . The calibration method developed for the Cosmology Large Angular Scale Surveyor (CLASS) TES bolometer arrays relies on current versus voltage ( I – V ) measurements acquired daily prior to CMB observations. By binning Q -band (40 GHz) I – V measurements by optical loading, we find that the gain calibration median standard error within a bin is 0.3%. We test the accuracy of this I – V bin detector calibration method by using the Moon as a photometric standard. The ratio of measured Moon amplitudes between the detector pairs sharing the same feedhorn indicates a TES calibration error of 0.5%. We also find that, for the CLASS Q -band TES array, calibrating the response of individual detectors based solely on the applied TES bias current accurately corrects TES gain variations across time but introduces a bias in the TES calibration from data counts to power units. Since the TES current bias value is set and recorded before every observation, this calibration method can always be applied to the raw TES data and is not subject to I – V data quality or processing errors. 
    more » « less
  9. Abstract Measurement of the largest angular scale (ℓ< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 <ℓ< 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125 ( 130 ) μ K arcmin . We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 <ℓ< 125 with the first bin showingD< 0.023 μ K CMB 2 at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. 
    more » « less