skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brigham, Laurel_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Global change alters ecosystems and their functioning, and biotic interactions can either buffer or amplify such changes. We utilized a long‐term nitrogen (N) addition and species removal experiment in the Front Range of Colorado, USA to determine whether a codominant forb and a codominant grass, with different effects on nutrient cycling and plant community structure, would buffer or amplify the effects of simulated N deposition on soil bacterial and fungal communities. While the plant community was strongly shaped by both the presence of dominant species and N addition, we did not find a mediating effect of the plant community on soil microbial response to N. In contrast to our hypothesis, we found a decoupling of the plant and microbial communities such that the soil microbial community shifted under N independently of directional shifts in the plant community. These findings suggest there are not strong cascading effects of N deposition across the plant–soil interface in our system. 
    more » « less