skip to main content

Search for: All records

Creators/Authors contains: "Brighenti, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the cold and warm gas content, kinematics, and spatial distribution of six local massive elliptical galaxies to probe the origin of the multiphase gas in their atmospheres. We report new observations, including Stratospheric Observatory for Infrared Astronomy [C ii ], Atacama Large Millimeter/submillimeter Array CO, Multi Unit Spectroscopic Explorer (MUSE) H α +[N ii ], and Very Large Array (VLA) radio observations. These are complemented by a large suite of multiwavelength archival data sets, including thermodynamical properties of the hot gas and radio jets, which are leveraged to investigate the role of active galactic nucleus (AGN) feeding/feedback in regulating the multiphase gas content. Our galactic sample shows a significant diversity in cool gas content, spanning filamentary and rotating structures. In our noncentral galaxies, the distribution of such gas is often concentrated, at variance with the more extended features observed in central galaxies. Misalignment between the multiphase gas and stars suggest that stellar mass loss is not the primary driver. A fraction of the cool gas might be acquired via galaxy interactions, but we do not find quantitative evidence of mergers in most of our systems. Instead, key evidence supports the origin via condensation out of the diffuse halo. Comparing with chaotic cold accretion (CCA) simulations, we find that our cool gas-free galaxies are likely in the overheated phase of the self-regulated AGN cycle, while for our galaxies with cool gas, the k-plot and AGN power correlation corroborate the phase of CCA feeding in which the condensation rain is triggering more vigorous AGN heating. The related C-ratio further shows that central/noncentral galaxies are expected to generate an extended/inner rain, consistent with our sample. 
    more » « less
  2. Context. The dynamics of the intracluster medium (ICM) is affected by turbulence driven by several processes, such as mergers, accretion and feedback from active galactic nuclei. Aims. X-ray surface brightness fluctuations have been used to constrain turbulence in galaxy clusters. Here, we use simulations to further investigate the relation between gas density and turbulent velocity fluctuations, with a focus on the effect of the stratification of the ICM. Methods. In this work, we studied the turbulence driven by hierarchical accretion by analysing a sample of galaxy clusters simulated with the cosmological code ENZO. We used a fixed scale filtering approach to disentangle laminar from turbulent flows. Results. In dynamically perturbed galaxy clusters, we found a relation between the root mean square of density and velocity fluctuations, albeit with a different slope than previously reported. The Richardson number is a parameter that represents the ratio between turbulence and buoyancy, and we found that this variable has a strong dependence on the filtering scale. However, we could not detect any strong relation between the Richardson number and the logarithmic density fluctuations, in contrast to results by recent and more idealised simulations. In particular, we find a strong effect from radial accretion, which appears to be the main driver for the gas fluctuations. The ubiquitous radial bias in the dynamics of the ICM suggests that homogeneity and isotropy are not always valid assumptions, even if the turbulent spectra follow Kolmogorov’s scaling. Finally, we find that the slope of the velocity and density spectra are independent of cluster-centric radii. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)