skip to main content

Search for: All records

Creators/Authors contains: "Bright, Joe S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present extensive multifrequency Karl G. Jansky Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the radio-bright supernova (SN) IIb SN 2004C that span ∼40–2793 days post-explosion. We interpret the temporal evolution of the radio spectral energy distribution in the context of synchrotron self-absorbed emission from the explosion’s forward shock as it expands in the circumstellar medium (CSM) previously sculpted by the mass-loss history of the stellar progenitor. VLBA observations and modeling of the VLA data point to a blastwave with average velocity ∼0.06cthat carries an energy of ≈1049erg. Our modeling further reveals a flat CSM density profileρCSMR−0.03±0.22up to a break radiusRbr≈ (1.96 ± 0.10) × 1016cm, with a steep density gradient followingρCSMR−2.3±0.5at larger radii. We infer that the flat part of the density profile corresponds to a CSM shell with mass ∼0.021M, and that the progenitor’s effective mass-loss rate varied with time over the range (50–500) × 10−5Myr−1for an adopted wind velocityvw= 1000 km s−1and shock microphysical parametersϵe= 0.1,ϵB= 0.01. These results add to the mounting observational evidence for departures from the traditional single-wind mass-loss scenarios in evolved, massive stars in the centuries leading up to core collapse. Potentially viable scenarios include mass lossmore »powered by gravity waves and/or interaction with a binary companion.

    « less
  2. Abstract We present a population of 19 radio-luminous supernovae (SNe) with emission reaching L ν ∼ 10 26 –10 29 erg s −1 Hz −1 in the first epoch of the Very Large Array Sky Survey (VLASS) at 2–4 GHz. Our sample includes one long gamma-ray burst, SN 2017iuk/GRB 171205A, and 18 core-collapse SNe detected at ≈1–60 yr after explosion. No thermonuclear explosion shows evidence for bright radio emission, and hydrogen-poor progenitors dominate the subsample of core-collapse events with spectroscopic classification at the time of explosion (79%). We interpret these findings in the context of the expected radio emission from the forward shock interaction with the circumstellar medium (CSM). We conclude that these observations require a departure from the single wind–like density profile (i.e., ρ CSM ∝ r −2 ) that is expected around massive stars and/or from a spherical Newtonian shock. Viable alternatives include the shock interaction with a detached, dense shell of CSM formed by a large effective progenitor mass-loss rate, M ̇ ∼ 10 − 4 – 10 − 1 M ⊙ yr −1 (for an assumed wind velocity of 1000 km s −1 ); emission from an off-axis relativistic jet entering our line of sight; ormore »the emergence of emission from a newly born pulsar-wind nebula. The relativistic SN 2012ap that is detected 5.7 and 8.5 yr after explosion with L ν ∼ 10 28 erg s −1 Hz −1 might constitute the first detections of an off-axis jet+cocoon system in a massive star. However, none of the VLASS SNe with archival data points are consistent with our model off-axis jet light curves. Future multiwavelength observations will distinguish among these scenarios. Our VLASS source catalogs, which were used to perform the VLASS cross-matching, are publicly available at https://doi.org/10.5281/zenodo.4895112 .« less
  3. Abstract We present deep X-ray and radio observations of the fast blue optical transient (FBOT) AT 2020xnd/ZTF 20acigmel at z = 0.2433 from 13 days to 269 days after explosion. AT 2020xnd belongs to the category of optically luminous FBOTs with similarities to the archetypal event AT 2018cow. AT 2020xnd shows luminous radio emission reaching L ν ≈ 8 × 10 29 erg s −1 Hz −1 at 20 GHz and 75 days post-explosion, accompanied by luminous and rapidly fading soft X-ray emission peaking at L X ≈ 6 × 10 42 erg s −1 . Interpreting the radio emission in the context of synchrotron radiation from the explosion’s shock interaction with the environment, we find that AT 2020xnd launched a high-velocity outflow ( v ∼ 0.1 c –0.2 c ) propagating into a dense circumstellar medium (effective M ̇ ≈ 10 − 3 M ⊙ yr −1 for an assumed wind velocity of v w = 1000 km s −1 ). Similar to AT 2018cow, the detected X-ray emission is in excess compared to the extrapolated synchrotron spectrum and constitutes a different emission component, possibly powered by accretion onto a newly formed black hole or neutron star. These propertiesmore »make AT 2020xnd a high-redshift analog to AT 2018cow, and establish AT 2020xnd as the fourth member of the class of optically luminous FBOTs with luminous multiwavelength counterparts.« less