We present photometry and spectroscopy of the slowly evolving superluminous Type IIn supernova (SN) 2015da. SN 2015da is extraordinary for its very high peak luminosity, and also for sustaining a high luminosity for several years. Even at 8 yr after explosion, SN 2015da remains as luminous as the peak of a normal SN II-P. The total radiated energy integrated over this time period (with no bolometric correction) is at least $1.6 \times 10^{51}$ erg (or 1.6 FOE). Including a mild bolometric correction, adding kinetic energy of the expanding cold dense shell of swept-up circumstellar material (CSM), and accounting for asymmetry, the total explosion kinetic energy was likely 5–10 FOE. Powering the light curve with CSM interaction requires an energetic explosion and 20 M$_{\odot }$ of H-rich CSM, which in turn implies a massive progenitor system $\gt $30 M$_{\odot }$. Narrow P Cyg features show steady CSM expansion at 90 km s$^{-1}$, requiring a high average mass-loss rate of $\sim$0.1 M$_{\odot }$ yr$^{-1}$ sustained for two centuries before explosion (although ramping up toward explosion time). No current theoretical model for single-star pre-SN mass-loss can account for this. The slow CSM, combined with broad wings of H $\alpha$ indicating H-rich material in the unshocked ejecta, disfavours a pulsational pair instability model for the pre-SN mass-loss. Instead, violent pre-SN binary interaction is a likely culprit. Finally, SN 2015da exhibits the characteristic asymmetric blueshift in its emission lines from shortly after peak until the present epoch, adding another well-studied superluminous SNe IIn with unambiguous evidence of post-shock dust formation.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT -
ABSTRACT We present six epochs of optical spectropolarimetry of the Type IIP supernova (SN) 2021yja ranging from ∼25 to 95 d after the explosion. An unusually high continuum linear polarization of $p \approx 0.9~{{\ \rm per\ cent}}$ is measured during the early photospheric phase, followed by a steady decrease well before the onset of the nebular phase. This behaviour has not been observed before in Type IIP supernovae (SNe IIP). The observed continuum polarization angle does not change significantly during the photospheric phase. We find a pronounced axis of symmetry in the global ejecta that is shared in common with the Hα and Ca ii near-infrared triplet lines. These observations are consistent with an ellipsoidal geometry. The temporal evolution of the continuum polarization is also compatible with the SN ejecta interacting with aspherical circumstellar matter (CSM), although no spectroscopic features that may be associated with strong interaction can be identified. Alternatively, we consider the source of the high polarization to be an extended hydrogen envelope that is indistinguishable from low-density CSM.
-
Abstract We report early-time ultraviolet (UV) and optical spectroscopy of the young, nearby Type II supernova (SN) 2022wsp obtained by the Hubble Space Telescope (HST)/STIS at about 10 and 20 days after the explosion. The SN 2022wsp UV spectra are compared to those of other well-observed Type II/IIP SNe, including the recently studied Type IIP SN 2021yja. Both SNe exhibit rapid cooling and similar evolution during early phases, indicating a common behavior among SNe II. Radiative-transfer modeling of the spectra of SN 2022wsp with the
TARDIS code indicates a steep radial density profile in the outer layer of the ejecta, a solar metallicity, and a relatively high total extinction ofE (B −V ) = 0.35 mag. The early-time evolution of the photospheric velocity and temperature derived from the modeling agree with the behavior observed from other previously studied cases. The strong suppression of hydrogen Balmer lines in the spectra suggests interaction with a preexisting circumstellar environment could be occurring at early times. In the SN 2022wsp spectra, the absorption component of the Mgii P Cygni profile displays a double-trough feature on day +10 that disappears by day +20. The shape is well reproduced by the model without fine-tuning the parameters, suggesting that the secondary blueward dip is a metal transition that originates in the SN ejecta. -
ABSTRACT We present multi-epoch spectropolarimetry of Type IIn supernova SN2017hcc, 16–391 d after explosion. Continuum polarization up to 6 per cent is observed during the first epoch, making SN 2017hcc the most intrinsically polarized SN ever reported at visible wavelengths. During the first 29 d, when the polarization is strongest, the continuum polarization exhibits wavelength dependence that rises toward the blue, then becomes wavelength independent by day 45. The polarization drops rapidly during the first month, even as the flux is still climbing to peak brightness. None the less, unusually high polarization is maintained until day 68, at which point the polarization declines to levels comparable to those of previous well-studied SNe IIn. Only minor changes in position angle (PA) are measured throughout the evolution. The blue slope of the polarized continuum and polarized line emission during the first month suggests that an aspherical distribution of dust grains in pre-shock circumstellar material (CSM) is echoing the SN IIn spectrum and strongly influencing the polarization, while the subsequent decline during the wavelength-independent phase appears consistent with electron scattering near the SN/CSM interface. The persistence of the PA between these two phases suggests that the pre-existing CSM responsible for the dust scattering at early times is part of the same geometric structure as the electron-scattering region that dominates the polarization at later times. SN 2017hcc appears to be yet another, but more extreme, case of aspherical yet well-ordered CSM in Type IIn SNe, possibly resulting from pre-SN mass-loss shaped by a binary progenitor system.
-
Abstract We present six epochs of optical spectropolarimetry of the Type II supernova (SN) 2023ixf ranging from ∼2 to 15 days after the explosion. Polarimetry was obtained with the Kast double spectrograph on the Shane 3 m telescope at Lick Observatory, representing the earliest such observations ever captured for an SN. We observe a high continuum polarization
p cont≈ 1% on days +1.4 and +2.5 before dropping to 0.5% on day +3.5, persisting at that level up to day +14.5. Remarkably, this change coincides temporally with the disappearance of highly ionized “flash” features. The decrease of the continuum polarization is accompanied by a ∼70° rotation of the polarization position angle (PA) as seen across the continuum. The early evolution of the polarization may indicate different geometric configurations of the electron-scattering atmosphere as seen before and after the disappearance of the emission lines associated with highly ionized species (e.g., Heii , Civ , and Niii ), which are likely produced by elevated mass loss shortly prior to the SN explosion. We interpret the rapid change of polarization and PA from days +2.5 to +4.5 as the time when the SN ejecta emerge from the dense asymmetric circumstellar material (CSM). The temporal evolution of the continuum polarization and the PA is consistent with an aspherical SN explosion that exhibits a distinct geometry compared to the CSM. The rapid follow-up spectropolarimetry of SN 2023ixf during the shock ionization phase reveals an exceptionally asymmetric mass-loss process leading up to the explosion. -
ABSTRACT A growing number of supernovae (SNe) are now known to exhibit evidence for significant interaction with a dense, pre-existing, circumstellar medium (CSM). SNe Ibn comprise one such class that can be characterized by both rapidly evolving light curves and persistent narrow He i lines. The origin of such a dense CSM in these systems remains a pressing question, specifically concerning the progenitor system and mass-loss mechanism. In this paper, we present multiwavelength data of the Type Ibn SN 2020nxt, including HST/STIS ultraviolet spectra. We fit the data with recently updated CMFGEN models designed to handle configurations for SNe Ibn. The UV coverage yields strong constraints on the energetics and, when combined with the CMFGEN models, offer new insight on potential progenitor systems. We find the most successful model is a ≲4 M⊙ helium star that lost its $\sim 1\, {\rm M}_\odot$ He-rich envelope in the years preceding core collapse. We also consider viable alternatives, such as a He white dwarf merger. Ultimately, we conclude at least some SNe Ibn do not arise from single, massive (>30 M⊙) Wolf–Rayet-like stars.
Free, publicly-accessible full text available May 6, 2025 -
Abstract The detonation of a thin (≲0.03 M ⊙ ) helium shell (He-shell) atop a ∼1 M ⊙ white dwarf (WD) is a promising mechanism to explain normal Type Ia supernovae (SNe Ia), while thicker He-shells and less massive WDs may explain some recently observed peculiar SNe Ia. We present observations of SN 2020jgb, a peculiar SN Ia discovered by the Zwicky Transient Facility (ZTF). Near maximum brightness, SN 2020jgb is slightly subluminous (ZTF g -band absolute magnitude −18.7 mag ≲ M g ≲ −18.2 mag depending on the amount of host-galaxy extinction) and shows an unusually red color (0.2 mag ≲ g ZTF − r ZTF ≲ 0.4 mag) due to strong line-blanketing blueward of ∼5000 Å. These properties resemble those of SN 2018byg, a peculiar SN Ia consistent with an He-shell double detonation (DDet) SN. Using detailed radiative transfer models, we show that the optical spectroscopic and photometric evolution of SN 2020jgb is broadly consistent with a ∼0.95–1.00 M ⊙ (C/O core + He-shell) progenitor ignited by a ≳0.1 M ⊙ He-shell. However, one-dimensional radiative transfer models without non-local-thermodynamic-equilibrium treatment cannot accurately characterize the line-blanketing features, making the actual shell mass uncertain. We detect a prominent absorption feature at ∼1 μ m in the near-infrared (NIR) spectrum of SN 2020jgb, which might originate from unburnt helium in the outermost ejecta. While the sample size is limited, we find similar 1 μ m features in all the peculiar He-shell DDet candidates with NIR spectra obtained to date. SN 2020jgb is also the first peculiar He-shell DDet SN discovered in a star-forming dwarf galaxy, indisputably showing that He-shell DDet SNe occur in both star-forming and passive galaxies, consistent with the normal SN Ia population.more » « less
-
Stars with zero-age main sequence masses between 140 and 260
M ⊙are thought to explode as pair-instability supernovae (PISNe). During their thermonuclear runaway, PISNe can produce up to several tens of solar masses of radioactive nickel, resulting in luminous transients similar to some superluminous supernovae (SLSNe). Yet, no unambiguous PISN has been discovered so far. SN 2018ibb is a hydrogen-poor SLSN atz = 0.166 that evolves extremely slowly compared to the hundreds of known SLSNe. Between mid 2018 and early 2022, we monitored its photometric and spectroscopic evolution from the UV to the near-infrared (NIR) with 2–10 m class telescopes. SN 2018ibb radiated > 3 × 1051 erg during its evolution, and its bolometric light curve reached > 2 × 1044 erg s−1at its peak. The long-lasting rise of > 93 rest-frame days implies a long diffusion time, which requires a very high total ejected mass. The PISN mechanism naturally provides both the energy source (56Ni) and the long diffusion time. Theoretical models of PISNe make clear predictions as to their photometric and spectroscopic properties. SN 2018ibb complies with most tests on the light curves, nebular spectra and host galaxy, and potentially all tests with the interpretation we propose. Both the light curve and the spectra require 25–44M ⊙of freshly nucleosynthesised56Ni, pointing to the explosion of a metal-poor star with a helium core mass of 120–130M ⊙at the time of death. This interpretation is also supported by the tentative detection of [CoII ]λ 1.025 μm, which has never been observed in any other PISN candidate or SLSN before. We observe a significant excess in the blue part of the optical spectrum during the nebular phase, which is in tension with predictions of existing PISN models. However, we have compelling observational evidence for an eruptive mass-loss episode of the progenitor of SN 2018ibb shortly before the explosion, and our dataset reveals that the interaction of the SN ejecta with this oxygen-rich circumstellar material contributed to the observed emission. That may explain this specific discrepancy with PISN models. Powering by a central engine, such as a magnetar or a black hole, can be excluded with high confidence. This makes SN 2018ibb by far the best candidate for being a PISN, to date.Free, publicly-accessible full text available March 1, 2025 -
Abstract We report spectropolarimetric observations of the Type Ia supernova (SN) SN 2021rhu at four epochs: −7, +0, +36, and +79 days relative to its B -band maximum luminosity. A wavelength-dependent continuum polarization peaking at 3890 ± 93 Å and reaching a level of p max = 1.78 % ± 0.02 % was found. The peak of the polarization curve is bluer than is typical in the Milky Way, indicating a larger proportion of small dust grains along the sight line to the SN. After removing the interstellar polarization, we found a pronounced increase of the polarization in the Ca ii near-infrared triplet, from ∼0.3% at day −7 to ∼2.5% at day +79. No temporal evolution in high-resolution flux spectra across the Na i D and Ca ii H and K features was seen from days +39 to +74, indicating that the late-time increase in polarization is intrinsic to the SN as opposed to being caused by scattering of SN photons in circumstellar or interstellar matter. We suggest that an explanation for the late-time rise of the Ca ii near-infrared triplet polarization may be the alignment of calcium atoms in a weak magnetic field through optical excitation/pumping by anisotropic radiation from the SN.more » « less