Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We demonstrate the use of nanosecond pulse transient plasma (NPTP) to improve the control (and acceleration) of the combustion of solid rocket propellants. Here, we fabricate end-burning propellant samples (i.e., grains) with a co-axial center wire electrode using hydroxyl terminated polybutadiene (HTPB), isodecyl pelargonate (IDP), modified diphenyl diisocyanate (MDI), and ammonium perchlorate (AP) as the fuel, plasticizer, curative, and oxidizer, respectively. High voltage (20 kV) nanosecond pulses (20 nsec) produce a streamer discharge that provides electronic throttling of the solid rocket propellant. These studies are carried out over a wide range of oxidizer mass fractions, including those considered insensitive munitions (IM). In addition, real time imaging is performed characterizing the plasma-formation, evolution of the ignition process, and plasma enhanced flamefuel coupling. We believe the plasma-based mechanisms of enhancement are 3-fold: 1.) The plasma provides highly energetic electrons that drive new chemical reaction pathways via highly reactive atomic species such as H, O, and Cl, 2.) The plasma sputters chunks of the solid fuel material up into the flame where it is combusted, producing an agitated flame profile. 3.) The plasma provides increased turbulence and multi-scale mixing due to hydrodynamic effects (i.e., ionic winds), which further improves the combustion process. Having electronic control of the burn rate introduces the ability to “throttle” solid rocket motors and introduce new flight profile options beyond a pre-selected profile such as the typical boost-sustain profile. While we are unable to quantify the burn rate or thrust from these relatively simple observations, we observe clear evidence of the effect of the plasma on the combustion of these solid rocket fuels even at high oxidizer content.more » « lessFree, publicly-accessible full text available May 1, 2025
-
Abstract The biocidal properties of gecko skin and cicada wings have inspired the synthesis of synthetic surfaces decorated with high aspect ratio nanostructures that inactivate microorganisms. Here, we investigate the bactericidal activity of oriented zinc phthalocyanine (ZnPc) nanopillars grown using a simple pencil-drawn graphite templating technique. By varying the evaporation time, nanopillars initiated from graphite that was scribbled using a pencil onto silicon substrates were optimized to yield a high inactivation of the Gram-negative bacteria,
Escherichia coli . We next adapted the procedure so that analogous nanopillars could be grown from pencil-drawn graphite scribbled onto stainless steel, flexible polyimide foil, and glass substrates. Time-dependent bacterial cytotoxicity studies indicate that the oriented nanopillars grown on all four substrates inactivated up to 97% of theE. coli quickly, in 15 min or less. These results suggest that organic nanostructures, which can be easily grown on a broad range of substrates hold potential as a new class of biocidal surfaces that kill microbes quickly and potentially, without spreading antibiotic-resistance genes. -
Abstract Polymorphism, the ability for a given material to adopt multiple crystalline packing states, is a powerful approach for investigating how changes in molecular packing influence charge transport within organic semiconductors. In this study, a new “thin film” polymorph of the high‐performance, p‐type small molecule N‐octyldiisopropylsilyl acetylene bistetracene (BT) is isolated and characterized. Structural changes in the BT films are monitored using static and in situ grazing‐incidence X‐ray diffraction. The diffraction data, combined with simulation and crystallographic refinement calculations, show the molecular packing of the “thin film” polymorph transforms from a slipped 1D π‐stacking motif to a highly oriented and crystalline film upon solvent vapor annealing with a 2D brick‐layer π‐stacking arrangement, similar to the so‐called “bulk” structure observed in single crystals. Charge transport is characterized as a function of vapor annealing, grain orientation, and temperature. Demonstrating that mobility increases by three orders of magnitude upon solvent vapor annealing and displays a differing temperature‐dependent mobility behavior.
-
Abstract Utilizing the intrinsic mobility–strain relationship in semiconductors is critical for enabling strain engineering applications in high‐performance flexible electronics. Here, measurements of Hall effect and Raman spectra of an organic semiconductor as a function of uniaxial mechanical strain are reported. This study reveals a very strong, anisotropic, and reversible modulation of the intrinsic (trap‐free) charge carrier mobility of single‐crystal rubrene transistors with strain, showing that the effective mobility of organic circuits can be enhanced by up to 100% with only 1% of compressive strain. Consistently, Raman spectroscopy reveals a systematic shift of the low‐frequency Raman modes of rubrene to higher (lower) frequencies with compressive (tensile) strain, which is indicative of a reduction (enhancement) of thermal molecular disorder in the crystal with strain. This study lays the foundation of the strain engineering in organic electronics and advances the knowledge of the relationship between the carrier mobility, low‐frequency vibrational modes, strain, and molecular disorder in organic semiconductors.