skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Britto, Sergio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drops on a vibrating substrate can experience a variety of motion regimes, including directional motion and climbing. The key ingredient to elicit these regimes is simultaneously activating the in-plane and out-of-plane degrees of freedom of the substrate with the proper phase difference. This is typically achieved by imposing a prescribed rigid-body motion of the entire substrate. However, this framework is unable to establish different motion conditions in different regions of the substrate, thus lacking the precious spatial selectivity necessary to elicit complex drop control patterns. Challenging this paradigm, we leverage the inherent elasticity of the substrate to provide the required in-plane and out-of-plane modal characteristics and spatial diversity. To this end, we design architected substrates exhibiting a rich landscape of deformation modes, and we exploit their multimodal response to switch between drop motion regimes and select desired spatial patterns, using the excitation frequency as our tuning parameter. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026