skip to main content

Search for: All records

Creators/Authors contains: "Brock, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. One of the main contributors to the human errors that lead to catastrophic injuries in the construction workplace is the failure to identify hazards as a result of poor attention or cognitive lapses. To address this safety concern, the present study used eye-tracking technology to assess how the association between work experience and hazard identification may be mediated due to inattention. A mediation analysis was conducted and tested using a bias-corrected bootstrapping technique with 5000 resamples. The results estimate the direct and indirect effects of work experience on the hazard identification skills of construction workers observing varying hazardous conditions. Themore »results of the mediation analysis confirm that inattention—demonstrated via inattentiveness toward hazards—mediates the relationship between work experience and hazard identification. Specifically, though work experience and dwell time positively correlate with hazard identification, the direct effect of work experience on hazard identification is attenuated with the inclusion of the mediator variables in the model, thus suggesting attentional impairment offsets the benefits of work experience. The outcomes of this study will enable researchers and safety practitioners to harness real-time eye-movement patterns to identify the precursors of cognitive failure, deficient attentional allocation, and poor visual search strategies, all of which may put workers at risk on construction sites. The results also facilitate the provision of personalized safety feedback to workers and the design of training interventions that will address unique performance deficiencies in workers to prevent the human errors that cause injuries in dynamic environments.« less
  2. Cognitive processes have been found to contribute substantially to the human errors that lead to construction accidents. Working memory—a cognitive system with a limited capacity that is responsible for temporarily holding information available for processing—plays an important role in reasoning and decision-making. Since eye movements indicate where a worker directs his/her attention, tracking such movements provides a practical way to measure workers’ attention and comprehension of construction hazards. As a departure in construction industry research, this study correlates attentional allocation with working memory to assess workers’ situation awareness under different scenarios that expose workers to various hazards. To achieve thismore »goal, this study merges research linking eye movements and workers’ attention with research focused on working-memory load and decision making and evaluates what, how, and where a worker distributes his/her attention while performing a task under different working-memory loads. Path analysis models then examined the direct and indirect effect of different working-memory loads on hazard identification performance. The independent variable (working-memory load) is linked to the dependent variable (hazard identification) through the set of mediators (attention metrics). The results showed that the high-memory load condition delayed workers’ hazard identification. The findings of this study emphasize the important role working memory plays in determining how and why workers in dynamic work environments fail to detect, comprehend, and/or respond to physical risks.« less
  3. Abstract The accurate simulation of additional interactions at the ATLAS experiment for the analysis of proton–proton collisions delivered by the Large Hadron Collider presents a significant challenge to the computing resources. During the LHC Run 2 (2015–2018), there were up to 70 inelastic interactions per bunch crossing, which need to be accounted for in Monte Carlo (MC) production. In this document, a new method to account for these additional interactions in the simulation chain is described. Instead of sampling the inelastic interactions and adding their energy deposits to a hard-scatter interaction one-by-one, the inelastic interactions are presampled, independent of the hardmore »scatter, and stored as combined events. Consequently, for each hard-scatter interaction, only one such presampled event needs to be added as part of the simulation chain. For the Run 2 simulation chain, with an average of 35 interactions per bunch crossing, this new method provides a substantial reduction in MC production CPU needs of around 20%, while reproducing the properties of the reconstructed quantities relevant for physics analyses with good accuracy.« less
    Free, publicly-accessible full text available December 1, 2023
  4. Abstract The ATLAS experiment at the Large Hadron Collider has a broad physics programme ranging from precision measurements to direct searches for new particles and new interactions, requiring ever larger and ever more accurate datasets of simulated Monte Carlo events. Detector simulation with Geant4 is accurate but requires significant CPU resources. Over the past decade, ATLAS has developed and utilized tools that replace the most CPU-intensive component of the simulation—the calorimeter shower simulation—with faster simulation methods. Here, AtlFast3, the next generation of high-accuracy fast simulation in ATLAS, is introduced. AtlFast3 combines parameterized approaches with machine-learning techniques and is deployed tomore »meet current and future computing challenges, and simulation needs of the ATLAS experiment. With highly accurate performance and significantly improved modelling of substructure within jets, AtlFast3 can simulate large numbers of events for a wide range of physics processes.« less
    Free, publicly-accessible full text available December 1, 2023
  5. Free, publicly-accessible full text available May 1, 2023
  6. Free, publicly-accessible full text available May 1, 2023
  7. Abstract The energy response of the ATLAS calorimeter is measured for single charged pions with transverse momentum in the range $$10more »situ single-particle measurements. The calorimeter response to single-pions is observed to be overestimated by $${\sim }2\%$$ ∼ 2 % across a large part of the $$p_{\text {T}}$$ p T spectrum in the central region and underestimated by $${\sim }4\%$$ ∼ 4 % in the endcaps in the ATLAS simulation. The uncertainties in the measurements are $${\lesssim }1\%$$ ≲ 1 % for $$15« less
    Free, publicly-accessible full text available March 1, 2023
  8. A bstract Searches are conducted for new spin-0 or spin-1 bosons using events where a Higgs boson with mass 125 GeV decays into four leptons ( ℓ = e , μ ). This decay is presumed to occur via an intermediate state which contains two on-shell, promptly decaying bosons: H → XX/ZX → 4 ℓ , where the new boson X has a mass between 1 and 60 GeV. The search uses pp collision data collected with the ATLAS detector at the LHC with an integrated luminosity of 139 fb − 1 at a centre-of-mass energy $$ \sqrt{s} $$ smore »= 13 TeV. The data are found to be consistent with Standard Model expectations. Limits are set on fiducial cross sections and on the branching ratio of the Higgs boson to decay into XX/ZX , improving those from previous publications by a factor between two and four. Limits are also set on mixing parameters relevant in extensions of the Standard Model containing a dark sector where X is interpreted to be a dark boson.« less
    Free, publicly-accessible full text available March 1, 2023
  9. Abstract This paper presents a measurement of the electroweak production of two jets in association with a $$Z\gamma $$ Z γ pair, with the Z boson decaying into two neutrinos. It also presents a search for invisible or partially invisible decays of a Higgs boson with a mass of 125  $$\text {GeV}$$ GeV produced through vector-boson fusion with a photon in the final state. These results use data from LHC proton–proton collisions at $$\sqrt{s}$$ s = 13  $$\text {TeV}$$ TeV collected with the ATLAS detector and corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . Themore »event signature, shared by all benchmark processes considered for the measurements and searches, is characterized by a significant amount of unbalanced transverse momentum and a photon in the final state, in addition to a pair of forward jets. Electroweak $$Z\gamma $$ Z γ production in association with two jets is observed in this final state with a significance of 5.2 (5.1 expected) standard deviations. The measured fiducial cross-section for this process is $$1.31\pm 0.29$$ 1.31 ± 0.29  fb. An observed (expected) upper limit of 0.37 ( $$0.34^{+0.15}_{-0.10}$$ 0 . 34 - 0.10 + 0.15 ) at 95% confidence level is set on the branching ratio of a 125  $$\text {GeV}$$ GeV Higgs boson to invisible particles, assuming the Standard Model production cross-section. The signature is also interpreted in the context of decays of a Higgs boson into a photon and a dark photon. An observed (expected) 95% CL upper limit on the branching ratio for this decay is set at 0.018 ( $$0.017^{+0.007}_{-0.005}$$ 0 . 017 - 0.005 + 0.007 ), assuming the Standard Model production cross-section for a 125  $$\text {GeV}$$ GeV Higgs boson.« less
    Free, publicly-accessible full text available February 1, 2023