skip to main content

Search for: All records

Creators/Authors contains: "Broniatowski, David A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2023
  2. Free, publicly-accessible full text available March 1, 2023
  3. Free, publicly-accessible full text available December 1, 2022
  4. Free, publicly-accessible full text available December 1, 2022
  5. Guidi, Barbara (Ed.)
    The COVID-19 pandemic brought widespread attention to an “infodemic” of potential health misinformation. This claim has not been assessed based on evidence. We evaluated if health misinformation became more common during the pandemic. We gathered about 325 million posts sharing URLs from Twitter and Facebook during the beginning of the pandemic (March 8-May 1, 2020) compared to the same period in 2019. We relied on source credibility as an accepted proxy for misinformation across this database. Human annotators also coded a subsample of 3000 posts with URLs for misinformation. Posts about COVID-19 were 0.37 times as likely to link to “not credible” sources and 1.13 times more likely to link to “more credible” sources than prior to the pandemic. Posts linking to “not credible” sources were 3.67 times more likely to include misinformation compared to posts from “more credible” sources. Thus, during the earliest stages of the pandemic, when claims of an infodemic emerged, social media contained proportionally less misinformation than expected based on the prior year. Our results suggest that widespread health misinformation is not unique to COVID-19. Rather, it is a systemic feature of online health communication that can adversely impact public health behaviors and must therefore bemore »addressed.« less
    Free, publicly-accessible full text available January 12, 2023
  6. Abstract Gilead et al. offer a thoughtful and much-needed treatment of abstraction. However, it fails to build on an extensive literature on abstraction , representational diversity , neurocognition , and psychopathology that provides important constraints and alternative evidence-based conceptions. We draw on conceptions in software engineering, socio-technical systems engineering, and a neurocognitive theory with abstract representations of gist at its core, fuzzy-trace theory.
  7. Background Social distancing is an important component of the response to the COVID-19 pandemic. Minimizing social interactions and travel reduces the rate at which the infection spreads and “flattens the curve” so that the medical system is better equipped to treat infected individuals. However, it remains unclear how the public will respond to these policies as the pandemic continues. Objective The aim of this study is to present the Twitter Social Mobility Index, a measure of social distancing and travel derived from Twitter data. We used public geolocated Twitter data to measure how much users travel in a given week. Methods We collected 469,669,925 tweets geotagged in the United States from January 1, 2019, to April 27, 2020. We analyzed the aggregated mobility variance of a total of 3,768,959 Twitter users at the city and state level from the start of the COVID-19 pandemic. Results We found a large reduction (61.83%) in travel in the United States after the implementation of social distancing policies. However, the variance by state was high, ranging from 38.54% to 76.80%. The eight states that had not issued statewide social distancing orders as of the start of April ranked poorly in terms of travel reduction:more »Arkansas (45), Iowa (37), Nebraska (35), North Dakota (22), South Carolina (38), South Dakota (46), Oklahoma (50), Utah (14), and Wyoming (53). We are presenting our findings on the internet and will continue to update our analysis during the pandemic. Conclusions We observed larger travel reductions in states that were early adopters of social distancing policies and smaller changes in states without such policies. The results were also consistent with those based on other mobility data to a certain extent. Therefore, geolocated tweets are an effective way to track social distancing practices using a public resource, and this tracking may be useful as part of ongoing pandemic response planning.« less
  8. Introduction The Centers for Disease Control and Prevention (CDC) spend significant time and resources to track influenza vaccination coverage each influenza season using national surveys. Emerging data from social media provide an alternative solution to surveillance at both national and local levels of influenza vaccination coverage in near real time. Objectives This study aimed to characterise and analyse the vaccinated population from temporal, demographical and geographical perspectives using automatic classification of vaccination-related Twitter data. Methods In this cross-sectional study, we continuously collected tweets containing both influenza-related terms and vaccine-related terms covering four consecutive influenza seasons from 2013 to 2017. We created a machine learning classifier to identify relevant tweets, then evaluated the approach by comparing to data from the CDC’s FluVaxView. We limited our analysis to tweets geolocated within the USA. Results We assessed 1 124 839 tweets. We found strong correlations of 0.799 between monthly Twitter estimates and CDC, with correlations as high as 0.950 in individual influenza seasons. We also found that our approach obtained geographical correlations of 0.387 at the US state level and 0.467 at the regional level. Finally, we found a higher level of influenza vaccine tweets among female users than male users, also consistentmore »with the results of CDC surveys on vaccine uptake. Conclusion Significant correlations between Twitter data and CDC data show the potential of using social media for vaccination surveillance. Temporal variability is captured better than geographical and demographical variability. We discuss potential paths forward for leveraging this approach.« less