skip to main content

Search for: All records

Creators/Authors contains: "Brook, Edward J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. In 2013 an ice core was recovered from Roosevelt Island, an ice dome between two submarine troughs carved by paleo-ice-streams in the Ross Sea, Antarctica. The ice core is part of the Roosevelt Island Climate Evolution (RICE) project and provides new information about the past configuration of the West Antarctic Ice Sheet (WAIS) and its retreat during the last deglaciation. In this work we present the RICE17 chronology, which establishes the depth–age relationship for the top 754 m of the 763 m core. RICE17 is a composite chronology combining annual layer interpretations for 0–343 m (Winstrup et al., 2019) with new estimates for gasmore »and ice ages based on synchronization of CH4 and δ18Oatm records to corresponding records from the WAIS Divide ice core and by modeling of the gas age–ice age difference. Novel aspects of this work include the following: (1) an automated algorithm for multiproxy stratigraphic synchronization of high-resolution gas records; (2) synchronization using centennial-scale variations in methane for pre-anthropogenic time periods (60–720 m, 1971 CE to 30 ka), a strategy applicable for future ice cores; and (3) the observation of a continuous climate record back to ∼65 ka providing evidence that the Roosevelt Island Ice Dome was a constant feature throughout the last glacial period.« less
  2. Abstract. The last deglaciation, which occurred from 18 000 to 11 000 years ago,is the most recent large natural climatic variation of global extent. Withaccurately dated paleoclimate records, we can investigate the timings ofrelated variables in the climate system during this major transition. Here,we use an accurate relative chronology to compare temperature proxy data andglobal atmospheric CO2 as recorded in Antarctic ice cores. In addition tofive regional records, we compare a δ18O stack, representingAntarctic climate variations with the high-resolution robustly dated WAISDivide CO2 record (West Antarctic Ice Sheet). We assess the CO2 and Antarctic temperature phaserelationship using a stochastic method to accurately identifymore »the probabletimings of changes in their trends. Four coherent changes are identified forthe two series, and synchrony between CO2 and temperature is within the95 % uncertainty range for all of the changes except the end of glacial termination 1 (T1). During the onset of the last deglaciation at 18 ka and the deglaciationend at 11.5 ka, Antarctic temperature most likely led CO2 by several centuries (by 570 years, within a range of 127 to 751 years, 68 %probability, at the T1 onset; and by 532 years, within a range of 337 to 629years, 68 % probability, at the deglaciation end). At 14.4 ka, the onsetof the Antarctic Cold Reversal (ACR) period, our results do not show a clearlead or lag (Antarctic temperature leads by 50 years, within a range of−137 to 376 years, 68 % probability). The same is true at the end of the ACR(CO2 leads by 65 years, within a range of 211 to 117 years, 68 %probability). However, the timings of changes in trends for the individualproxy records show variations from the stack, indicating regional differencesin the pattern of temperature change, particularly in the WAIS Divide recordat the onset of the deglaciation; the Dome Fuji record at the deglaciationend; and the EDML record after 16 ka (EPICA Dronning Maud Land, where EPICA is the European Project for Ice Coring in Antarctica). In addition, two changes – one at 16 ka in the CO2 record and one after the ACR onset in three of theisotopic temperature records – do not have high-probability counterparts in the other record. The likely-variable phasing we identify testify to thecomplex nature of the mechanisms driving the carbon cycle and Antarctictemperature during the deglaciation.« less
  3. Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4more »peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND.« less
  4. Abstract. The South Pole Ice Core (SPICEcore) was drilled in 2014–2016 to provide adetailed multi-proxy archive of paleoclimate conditions in East Antarcticaduring the Holocene and late Pleistocene. Interpretation of these recordsrequires an accurate depth–age relationship. Here, we present the SPICEcore (SP19) timescale for the age of the ice of SPICEcore. SP19 is synchronized to theWD2014 chronology from the West Antarctic Ice Sheet Divide (WAIS Divide) icecore using stratigraphic matching of 251 volcanic events. These eventsindicate an age of 54 302±519 BP (years before 1950) at thebottom of SPICEcore. Annual layers identified in sodium and magnesium ionsto 11 341 BP were used to interpolate betweenmore »stratigraphic volcanic tiepoints, yielding an annually resolved chronology through the Holocene.Estimated timescale uncertainty during the Holocene is less than 18 yearsrelative to WD2014, with the exception of the interval between 1800 to 3100BP when uncertainty estimates reach ±25 years due to widely spacedvolcanic tie points. Prior to the Holocene, uncertainties remain within 124 years relative to WD2014. Results show an average Holocene accumulation rateof 7.4 cm yr−1 (water equivalent). The time variability of accumulation rateis consistent with expectations for steady-state ice flow through the modernspatial pattern of accumulation rate. Time variations in nitrateconcentration, nitrate seasonal amplitude and δ15N of N2 in turn are as expected for the accumulation rate variations. The highlyvariable yet well-constrained Holocene accumulation history at the site canhelp improve scientific understanding of deposition-sensitive climateproxies such as δ15N of N2 and photolyzed chemicalcompounds.« less
  5. Water-stable isotopes in polar ice cores are a widely used temperature proxy in paleoclimate reconstruction, yet calibration remains challenging in East Antarctica. Here, we reconstruct the magnitude and spatial pattern of Last Glacial Maximum surface cooling in Antarctica using borehole thermometry and firn properties in seven ice cores. West Antarctic sites cooled ~10°C relative to the preindustrial period. East Antarctic sites show a range from ~4° to ~7°C cooling, which is consistent with the results of global climate models when the effects of topographic changes indicated with ice core air-content data are included, but less than those indicated with themore »use of water-stable isotopes calibrated against modern spatial gradients. An altered Antarctic temperature inversion during the glacial reconciles our estimates with water-isotope observations.

    « less
    Free, publicly-accessible full text available June 4, 2022