skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brosseau, Quentin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the midst of the COVID-19 pandemic, many live musical activities had to be postponed and even canceled to protect musicians and the audience. Orchestral ensembles face a particular challenge of contamination, because they are personally heavy and instrumentally diverse. A chief concern is whether wind instruments are vectors of contamination through aerosol dispersion. This study, made possible by the participation of members of The Philadelphia Orchestra, brings insight into the modes of production and early life of aerosols of human origin emitted by wind instruments. We find that these instruments produce aerosol levels that are comparable to normal speech in quantity and size distribution. However, the exit jet flow speeds are much lower than violent expiratory events (coughing and sneezing). For most wind instruments, the flow decays to background indoor-air levels at approximately 2 m away from the instrument's opening. Long range aerosol dispersion is, thus, via ambient air currents. 
    more » « less
  2. Numerous natural systems depend on the sedimentation of passive particles in the presence of swimming microorganisms. Here, we investigate the dynamics of the sedimentation of spherical colloids at various E. coli concentrations within the dilute regime. Results show the appearance of two sedimentation fronts: a spherical particle front and the bacteria front. We find that the bacteria front behave diffusive at short times, whereas at long times it decays linearly. The sedimentation speed of passive particles decays at a constant speed and decreases as bacteria concentration (ϕb) is increased. As ϕb is increased further, the sedimentation speed becomes independent of ϕb. The timescales of the bacteria front are associated with the particle settling speeds. Remarkably, all experiments collapse onto a single master line by using the bacteria front timescale. A phenomenological model is proposed that captures the sedimentation of passive particles in active fluids. 
    more » « less
  3. Understanding mixing and transport of passive scalars in active fluids is important to many natural (e.g., algal blooms) and industrial (e.g., biofuel, vaccine production) processes. Here, we study the mixing of a passive scalar (dye) in dilute suspensions of swimmingEscherichia coliin experiments using a two-dimensional (2D) time-periodic flow and in a simple simulation. Results show that the presence of bacteria hinders large-scale transport and reduces overall mixing rate. Stretching fields, calculated from experimentally measured velocity fields, show that bacterial activity attenuates fluid stretching and lowers flow chaoticity. Simulations suggest that this attenuation may be attributed to a transient accumulation of bacteria along regions of high stretching. Spatial power spectra and correlation functions of dye-concentration fields show that the transport of scalar variance across scales is also hindered by bacterial activity, resulting in an increase in average size and lifetime of structures. On the other hand, at small scales, activity seems to enhance local mixing. One piece of evidence is that the probability distribution of the spatial concentration gradients is nearly symmetric with a vanishing skewness. Overall, our results show that the coupling between activity and flow can lead to nontrivial effects on mixing and transport. 
    more » « less