We observed the Seyfert 1 galaxy Mrk 817 during an intensive multiwavelength reverberation mapping campaign for 16 months. Here, we examine the behavior of narrow UV absorption lines seen in the Hubble Space Telescope/Cosmic Origins Spectrograph spectra, both during the campaign and in other epochs extending over 14 yr. We conclude that, while the narrow absorption outflow system (at −3750 km s−1with FWHM = 177 km s−1) responds to the variations of the UV continuum as modified by the X-ray obscurer, its total column density (log
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract N H= 19.5 cm−2) did not change across all epochs. The adjusted ionization parameter (scaled with respect to the variations in the hydrogen-ionizing continuum flux) is logU H= −1.0 . The outflow is located at a distance smaller than 38 pc from the central source, which implies a hydrogen density ofn H> 3000 cm−3. The absorption outflow system only covers the continuum emission source and not the broad emission line region, which suggests that its transverse size is small (< 1016cm), with potential cloud geometries ranging from spherical to elongated along the line of sight.Free, publicly-accessible full text available September 1, 2025 -
We present the results of the XMM-Newton and NuSTAR observations taken as part of the ongoing, intensive multiwavelength monitoring program of the Seyfert 1 galaxy Mrk 817 by the AGN Space Telescope and Optical Reverberation Mapping 2 (AGN STORM 2) Project. The campaign revealed an unexpected and transient obscuring outflow, never before seen in this source. Of our four XMM-Newton/NuSTAR epochs, one fortuitously taken during a bright X-ray state has strong narrow absorption lines in the high-resolution grating spectra. From these absorption features, we determine that the obscurer is in fact a multiphase ionized wind with an outflow velocity of ∼5200 km s−1, and for the first time find evidence for a lower ionization component with the same velocity observed in absorption features in the contemporaneous Hubble Space Telescope spectra. This indicates that the UV absorption troughs may be due to dense clumps embedded in diffuse, higher ionization gas responsible for the X-ray absorption lines of the same velocity. We observe variability in the shape of the absorption lines on timescales of hours, placing the variable component at roughly 1000R_g if attributed to transverse motion along the line of sight. This estimate aligns with independent UV measurements of the distance to the obscurer suggesting an accretion disk wind at the inner broad line region. We estimate that it takes roughly 200 days for the outflow to travel from the disk to our line of sight, consistent with the timescale of the outflow's column density variations throughout the campaign.more » « lessFree, publicly-accessible full text available October 1, 2025
-
ABSTRACT The radio emission is an important observable of quasars, but its relationship to Eigenvector 1 and the [O iii] λ5007 Baldwin Effect is not fully understood. We explore these issues based on a sample of 1800 quasars taken from the Sloan Digital Sky Survey Data Release 7. We employ a new approach of selecting subsamples in the plane of fundamental physical parameters of the black hole mass and Eddington ratio, so as to reduce variables and complexity in analyses. Based on these subsamples, we investigate the relationship between radio loudness R and Eigenvector 1 and find that radio loudness is correlated with [O iii] λ5007 emission, but has no clear relationship with optical Fe ii emission, which indicates that the radio power is probably not a driver of Eigenvector 1 but merely a secondary process. In addition, we also investigate the impact of radio loudness on the Baldwin Effect of [O iii] λ5007. We find that when the radio loudness is not strong (log R < 2), the Baldwin Effect of [O iii] λ5007 is clear, while in the samples of extreme radio loudness (log R ≥ 2), the Baldwin Effect of [O iii] λ5007 becomes weaker or even disappears. We suggest that both radio loudness and luminosity influence the relative strength of [O iii].
-
Abstract The most reliable single-epoch supermassive black hole mass (
M BH) estimates in quasars are obtained by using the velocity widths of low-ionization emission lines, typically the Hβ λ 4861 line. Unfortunately, this line is redshifted out of the optical band atz ≈ 1, leavingM BHestimates to rely on proxy rest-frame ultraviolet (UV) emission lines, such as Civ λ 1549 or Mgii λ 2800, which contain intrinsic challenges when measuring, resulting in uncertainM BHestimates. In this work, we aim at correctingM BHestimates derived from the Civ and Mgii emission lines based on estimates derived from the Hβ emission line. We find that employing the equivalent width of Civ in derivingM BHestimates based on Mgii and Civ provides values that are closest to those obtained from Hβ . We also provide prescriptions to estimateM BHvalues when only Civ , only Mgii , and both Civ and Mgii are measurable. We find that utilizing both emission lines, where available, reduces the scatter of UV-basedM BHestimates by ∼15% when compared to previous studies. Lastly, we discuss the potential of our prescriptions to provide more accurate and precise estimates ofM BHgiven a much larger sample of quasars at 3.20 ≲z ≲ 3.50, where both Mgii and Hβ can be measured in the same near-infrared spectrum. -
Abstract An intensive reverberation mapping campaign of the Seyfert 1 galaxy Mrk 817 using the Cosmic Origins Spectrograph on the Hubble Space Telescope revealed significant variations in the response of broad UV emission lines to fluctuations in the continuum emission. The response of the prominent UV emission lines changes over an ∼60 day duration, resulting in distinctly different time lags in the various segments of the light curve over the 14 month observing campaign. One-dimensional echo-mapping models fit these variations if a slowly varying background is included for each emission line. These variations are more evident in the C
iv light curve, which is the line least affected by intrinsic absorption in Mrk 817 and least blended with neighboring emission lines. We identify five temporal windows with a distinct emission-line response, and measure their corresponding time delays, which range from 2 to 13 days. These temporal windows are plausibly linked to changes in the UV and X-ray obscuration occurring during these same intervals. The shortest time lags occur during periods with diminishing obscuration, whereas the longest lags occur during periods with rising obscuration. We propose that the obscuring outflow shields the broad UV lines from the ionizing continuum. The resulting change in the spectral energy distribution of the ionizing continuum, as seen by clouds at a range of distances from the nucleus, is responsible for the changes in the line response.Free, publicly-accessible full text available March 1, 2025 -
ABSTRACT Determining black hole masses and accretion rates with better accuracy and precision is crucial for understanding quasars as a population. These are fundamental physical properties that underpin models of active galactic nuclei. A primary technique to measure the black hole mass employs the reverberation mapping of low-redshift quasars, which is then extended via the radius–luminosity relationship for the broad-line region to estimate masses based on single-epoch spectra. An updated radius–luminosity relationship incorporates the flux ratio of optical Fe ii to H β ($\equiv \mathcal {R}_{\rm Fe}$) to correct for a bias in which more highly accreting systems have smaller line-emitting regions than previously realized. In this work, we demonstrate and quantify the effect of using this Fe-corrected radius-luminosity relationship on mass estimation by employing archival data sets possessing rest-frame optical spectra over a wide range of redshifts. We find that failure to use an Fe-corrected radius predictor results in overestimated single-epoch black hole masses for the most highly accreting quasars. Their accretion rate measures (LBol/LEdd and $\dot{\mathscr{M}}$ ) are similarly underestimated. The strongest Fe-emitting quasars belong to two classes: high-z quasars with rest-frame optical spectra, which, given their extremely high luminosities, require high accretion rates, and their low-z analogues, which, given their low black holes masses, must have high accretion rates to meet survey flux limits. These classes have mass corrections downward of about a factor of two, on average. These results strengthen the association of the dominant Eigenvector 1 parameter $\mathcal {R}_{\rm Fe}$ with the accretion process.
-
Abstract Quasars at
z ≳ 1 most often have redshifts measured from rest-frame ultraviolet emission lines. One of the most common such lines, Civ λ 1549, shows blueshifts up to ≈5000 km s−1and in rare cases even higher. This blueshifting results in highly uncertain redshifts when compared to redshift determinations from rest-frame optical emission lines, e.g., from the narrow [Oiii ]λ 5007 feature. We present spectroscopic measurements for 260 sources at 1.55 ≲z ≲ 3.50 having −28.0 ≲M i ≲ − 30.0 mag from the Gemini Near Infrared Spectrograph–Distant Quasar Survey (GNIRS-DQS) catalog, augmenting the previous iteration, which contained 226 of the 260 sources whose measurements are improved upon in this work. We obtain reliable systemic redshifts based on [Oiii ]λ 5007 for a subset of 121 sources, which we use to calibrate prescriptions for correcting UV-based redshifts. These prescriptions are based on a regression analysis involving Civ full-width-at-half-maximum intensity and equivalent width, along with the UV continuum luminosity at a rest-frame wavelength of 1350 Å. Applying these corrections can improve the accuracy and the precision in the Civ -based redshift by up to ∼850 km s−1and ∼150 km s−1, respectively, which correspond to ∼8.5 and ∼1.5 Mpc in comoving distance atz = 2.5. Our prescriptions also improve the accuracy of the best available multifeature redshift determination algorithm by ∼100 km s−1, indicating that the spectroscopic properties of the Civ emission line can provide robust redshift estimates for high-redshift quasars. We discuss the prospects of our prescriptions for cosmological and quasar studies utilizing upcoming large spectroscopic surveys. -
Abstract Weak emission-line quasars (WLQs) are a subset of type 1 quasars that exhibit extremely weak Ly
α + Nv λ 1240 and/or Civ λ 1549 emission lines. We investigate the relationship between emission-line properties and accretion rate for a sample of 230 “ordinary” type 1 quasars and 18 WLQs atz < 0.5 and 1.5 <z < 3.5 that have rest-frame ultraviolet and optical spectral measurements. We apply a correction to the Hβ -based black hole mass (M BH) estimates of these quasars using the strength of the optical Feii emission. We confirm previous findings that WLQs’M BHvalues are overestimated by up to an order of magnitude using the traditional broad-emission-line region size–luminosity relation. With thisM BHcorrection, we find a significant correlation between Hβ -based Eddington luminosity ratios and a combination of the rest-frame Civ equivalent width and Civ blueshift with respect to the systemic redshift. This correlation holds for both ordinary quasars and WLQs, which suggests that the two-dimensional Civ parameter space can serve as an indicator of accretion rate in all type 1 quasars across a wide range of spectral properties. -
ABSTRACT We report the results of long-term reverberation mapping campaigns of the nearby active galactic nuclei (AGNs) NGC 4151, spanning from 1994 to 2022, based on archived observations of the FAST Spectrograph Publicly Archived Programs and our new observations with the 2.3 m telescope at the Wyoming Infrared Observatory. We reduce and calibrate all the spectra in a consistent way, and derive light curves of the broad H β line and 5100 Å continuum. Continuum light curves are also constructed using public archival photometric data to increase sampling cadences. We subtract the host galaxy contamination using Hubble Space Telescope imaging to correct fluxes of the calibrated light curves. Utilizing the long-term archival photometric data, we complete the absolute flux-calibration of the AGN continuum. We find that the H β time delays are correlated with the 5100 Å luminosities as $\tau _{\rm H\beta }\propto L_{5100}^{0.46\pm 0.16}$. This is remarkably consistent with Bentz et al. (2013)’s global size–luminosity relationship of AGNs. Moreover, the data sets for five of the seasons allow us to obtain the velocity-resolved delays of the H β line, showing diverse structures (outflows, inflows, and discs). Combining our results with previous independent measurements, we find the measured dynamics of the H β broad-line region (BLR) are possibly related to the long-term trend of the luminosity. There is also a possible additional ∼1.86 yr time lag between the variation in BLR radius and luminosity. These results suggest that dynamical changes in the BLR may be driven by the effects of radiation pressure.
-
Abstract The AGN STORM 2 Collaboration targeted the Seyfert 1 galaxy Mrk 817 for a year-long multiwavelength, coordinated reverberation mapping campaign including Hubble Space Telescope, Swift, XMM-Newton, NICER, and ground-based observatories. Early observations with NICER and XMM revealed an X-ray state 10 times fainter than historical observations, consistent with the presence of a new dust-free, ionized obscurer. The following analysis of NICER spectra attributes variability in the observed X-ray flux to changes in both the column density of the obscurer by at least one order of magnitude ( N H ranges from 2.85 − 0.33 + 0.48 × 10 22 cm − 2 to 25.6 − 3.5 + 3.0 × 10 22 cm − 2 ) and the intrinsic continuum brightness (the unobscured flux ranges from 10 −11.8 to 10 −10.5 erg s −1 cm −2 ). While the X-ray flux generally remains in a faint state, there is one large flare during which Mrk 817 returns to its historical mean flux. The obscuring gas is still present at lower column density during the flare, but it also becomes highly ionized, increasing its transparency. Correlation between the column density of the X-ray obscurer and the strength of UV broad absorption lines suggests that the X-ray and UV continua are both affected by the same obscuration, consistent with a clumpy disk wind launched from the inner broad-line region.more » « less