skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Brown, Joe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Abstract The ocean–atmosphere exchange of CO 2 largely depends on the balance between marine microbial photosynthesis and respiration. Despite vast taxonomic and metabolic diversity among marine planktonic bacteria and archaea (prokaryoplankton) 1–3 , their respiration usually is measured in bulk and treated as a ‘black box’ in global biogeochemical models 4 ; this limits the mechanistic understanding of the global carbon cycle. Here, using a technology for integrated phenotype analyses and genomic sequencing of individual microbial cells, we show that cell-specific respiration rates differ by more than 1,000× among prokaryoplankton genera. The majority of respiration was found to be performed by minority members of prokaryoplankton (including the Roseobacter cluster), whereas cells of the most prevalent lineages (including Pelagibacter and SAR86) had extremely low respiration rates. The decoupling of respiration rates from abundance among lineages, elevated counts of proteorhodopsin transcripts in Pelagibacter and SAR86 cells and elevated respiration of SAR86 at night indicate that proteorhodopsin-based phototrophy 3,5–7 probably constitutes an important source of energy to prokaryoplankton and may increase growth efficiency. These findings suggest that the dependence of prokaryoplankton on respiration and remineralization of phytoplankton-derived organic carbon into CO 2 for its energy demands and growth may be lower than commonly assumed and variable among lineages. 
    more » « less
  3. Gralnick, Jeffrey A. (Ed.)
    ABSTRACT The use of enterococci as a fecal indicator bacterial group for public health risk assessment has been brought into question by recent studies showing that “naturalized” populations of Enterococcus faecalis exist in the extraenteric environment. The extent to which these naturalized E. faecalis organisms can confound water quality monitoring is unclear. To determine if strains isolated from different habitats display different survival strategies and responses, we compared the decay patterns of three E. faecalis isolates from the natural environment (environmental strains) against three human gut isolates (enteric strains) in laboratory mesocosms that simulate an oligotrophic, aerobic freshwater environment. Our results showed similar overall decay rates between enteric and environmental isolates based on viable plate and quantitative PCR (qPCR) counts. However, the enteric isolates exhibited a spike in copy number ratios of 16S rRNA gene transcripts to 16S rRNA gene DNA copies (rRNA:rDNA ratios) between days 1 and 3 of the mesocosm incubations that was not observed in environmental isolates, which could indicate a different stress response. Nevertheless, there was no strong evidence of differential gene expression between environmental and enteric isolates related to habitat adaptation in the accompanying mesocosm metatranscriptomes. Overall, our results provide novel information on how rRNA levels may vary over different growth conditions (e.g., standard lab versus oligotrophic) for this important indicator bacteria. We also observed some evidence for habitat adaptation in E. faecalis ; however, this adaptation may not be substantial or consistent enough for integration in water quality monitoring. IMPORTANCE Enterococci are commonly used worldwide to monitor environmental fecal contamination and public health risk for waterborne diseases. However, closely related enterococci strains adapted to living in the extraenteric environment may represent a lower public health risk and confound water quality estimates. We developed an rRNA:rDNA viability assay for E. faecalis (a predominant species within this fecal group) and tested it against both enteric and environmental isolates in freshwater mesocosms to assess whether this approach can serve as a more sensitive water quality monitoring tool. We were unable to reliably distinguish the different isolate types using this assay under the conditions tested; thus, environmental strains should continue to be counted during routine water monitoring. However, this assay could be useful for distinguishing more recent (i.e., higher-risk) fecal pollution because rRNA levels significantly decreased after 1 week in all isolates. 
    more » « less