skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Brown, Leone M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore,Euphydryas phaeton. In parts of its range,E. phaetonuses only a native host,Chelone glabra, while in others, it also uses an introduced host,Plantago lanceolata. We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth.

     
    more » « less
  2. Abstract

    Remote sensing imagery can provide critical information on the magnitude and extent of damage caused by forest pests and pathogens. However, monitoring short‐term changes in deciduous forest condition caused by defoliating insects is challenging and requires approaches that directly account for seasonal vegetation dynamics. We implemented a previously published harmonic modeling approach for forest condition monitoring in Google Earth Engine and systematically assessed the relative ability of condition change products generated using various model parameterizations for predicting pest abundances and defoliation during the 2016–2018 gypsy moth (Lymantria dispar) outbreak in southern New England. Our comparisons revealed that most models made reasonable predictions of changes in canopy condition and egg and larval abundances ofL. dispar, indicating a strong correlation between our harmonic‐based estimates of condition change and defoliator activity. The greatest differences in predictive ability were in the spectral domain, with assessments based on Tasseled Cap Greenness, Simple Ratio, and the Enhanced Vegetation Index ranking among the top models, and the commonly used Normalized Difference Vegetation Index consistently exhibiting poorer performance. We also observed notable differences in the magnitude of scores for different baseline periods. Additionally, we found that Landsat‐based condition scores better explained larval abundance than egg mass counts, which have historically been used as a proxy for later‐season larval abundance, indicating that our remote sensing approach may be more accurate and cost‐effective for generating consistent retrospective assessments ofL. disparpopulation abundance in addition to estimates of canopy damage. These findings provide important linkages between spectral changes detected using a harmonic modeling approach and biophysical aspects of defoliator activity, with potential to extend monitoring and prediction to regional or even continental scales.

     
    more » « less