skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brown, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2026
  2. ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as ‘Pocheina’roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantA. roseafruiting body development, which if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina, Acrasis, andAllovahlkampfiagenerated by PCR and transcriptomics. We demonstrate that the initial SSU sequence attributed to ‘P. rosea’ originated from anA. roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA genes phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages;Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies. 
    more » « less
    Free, publicly-accessible full text available October 6, 2025
  3. We compare the signal-to-noise ratio for different measurements that could be used for stellar interferometry. We find that single-photon sources with number-resolved detection outperform other weak local oscillator states. 
    more » « less
    Free, publicly-accessible full text available June 24, 2025
  4. The frequently encountered macroscopic slime molds of the genus Ceratiomyxa have long been recognized by mycologists and protistologists for hundreds of years. These organisms are amoebozoan amoebae that live and grow inside and on the surface of decaying wood. When conditions are favorable, they form subaerial sporulating structures called fruiting bodies which take on a variety of forms. These forms are typically some arrangement of column and/or branches, but one is uniquely poroid, forming folds instead. Originally, this poroid morphology was designated as its own species. However, it was not always clear what significance fruiting body morphology held in determining species. Currently, Ceratiomyxa fruticulosa var. porioides, the poroid form, is considered a taxonomic variety of Ceratiomyxa fruticulosa based on morphological designation alone. Despite its long history of observation and study, the genus Ceratiomyxa has been paid little molecular attention to alleviate these morphological issues. We have obtained the first transcriptomes of the taxon C. fruticulosa var. porioides and found single gene phylogenetic and multigene phylogenomic support to separate it from C. fruticulosa. This provides molecular evidence that fruiting body morphology does correspond to species level diversity. Therefore, we formally restore Ceratiomyxa porioides stat. nov. to its original status. 
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  5. Heterotrophic protists are vital in Earth’s ecosystems, influencing carbon and nutrient cycles and occupying key positions in food webs as microbial predators. Fossils and molecular data suggest the emergence of predatory microeukaryotes and the transition to a eukaryote-rich marine environment by 800 million years ago (Ma). Neoproterozoic vase-shaped microfossils (VSMs) linked to Arcellinida testate amoebae represent the oldest evidence of heterotrophic microeukaryotes. This study explores the phylogenetic relationship and divergence times of modern Arcellinida and related taxa using a relaxed molecular clock approach. We estimate the origin of nodes leading to extant members of the Arcellinida Order to have happened during the latest Mesoproterozoic and Neoproterozoic (1054 to 661 Ma), while the divergence of extant infraorders postdates the Silurian. Our results demonstrate that at least one major heterotrophic eukaryote lineage originated during the Neoproterozoic. A putative radiation of eukaryotic groups (e.g., Arcellinida) during the early-Neoproterozoic sustained by favorable ecological and environmental conditions may have contributed to eukaryotic life endurance during the Cryogenian severe ice ages. Moreover, we infer that Arcellinida most likely already inhabited terrestrial habitats during the Neoproterozoic, coexisting with terrestrial Fungi and green algae, before land plant radiation. The most recent extant Arcellinida groups diverged during the Silurian Period, alongside other taxa within Fungi and flowering plants. These findings shed light on heterotrophic microeukaryotes’ evolutionary history and ecological significance in Earth’s ecosystems, using testate amoebae as a proxy. 
    more » « less
    Free, publicly-accessible full text available July 23, 2025
  6. ABSTRACT Phylogenies built from multiple genes have become a common component of evolutionary biology studies. Molecular phylogenomic matrices used to build multi-gene phylogenies can be built from either nucleotide or protein matrices. Nucleotide-based analyses are often more appropriate for addressing phylogenetic questions in evolutionarily shallow timescales (i.e., less than 100 million years) while protein-based analyses are often more appropriate for addressing deep phylogenetic questions. PhyloFisher is a phylogenomic software package written in Python3. The manually curated PhyloFisher database contains 240 protein-coding genes from 304 eukaryotic taxa. Here we presentnucl_matrix_constructor.py, an expansion of the PhyloFisher starting database, and an update to PhyloFisher that maintains DNA sequences. This combination will allow users the ability to easily build nucleotide phylogenomic matrices while retaining the benefits of protein-based pre-processing used to identify contaminants and paralogy. 
    more » « less
  7. Abstract Biological soil crusts represent a rich habitat for diverse and complex eukaryotic microbial communities. A unique but extremely common habitat is the urban sidewalk and its cracks that collect detritus. While these habitats are ubiquitous across the globe, little to no work has been conducted to characterize protists found there. Amoeboid protists are major predators of bacteria and other microbial eukaryotes in these microhabitats and therefore play a substantial ecological role. From sidewalk crack soil crusts, we have isolated three naked amoebae with finely tapered subpseudopodia, and a simple life cycle consisting of a trophic amoeba and a cyst stage. Using a holistic approach including light, electron, and fluorescence microscopy as well as phylogenetics using the ribosomal small subunit rRNA gene and phylogenomics using 230 nuclear genes, we find that these amoeboid organisms fail to match any previously described eukaryote genus. However, we determined the amoebae belong to the amoebozoan lineage Variosea based on phylogenetics. The molecular analyses place our isolates in two novel genera forming a grade at the base of the variosean group Protosteliida. These three novel varioseans among two novel genera and species are herein named “Kanabo kenzan” and “Parakanabo toge.” 
    more » « less
  8. Quantum entanglement-based imaging promises significantly increased resolution by extending the spatial separation of optical collection apertures used in very-long-baseline interferometry for astronomy and geodesy. We report a tabletop entanglement-based interferometric imaging technique that utilizes two entangled field modes serving as a phase reference between two apertures. The spatial distribution of a simulated thermal light source is determined by interfering light collected at each aperture with one of the entangled fields and performing joint measurements. This experiment demonstrates the ability of entanglement to implement interferometric imaging. 
    more » « less