Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Acrasids are amoebae with the capacity to form multicellular fruiting bodies in a process known as aggregative multicellularity (AGM). This makes acrasids the only known example of multicellularity among the earliest branches of eukaryotes (the former Excavata). Here, we report theAcrasis konagenome sequence plus transcriptomes from pre-, mid- and post-developmental stages. The genome is rich in novelty and genes with strong signatures of horizontal transfer, and multigene families encode nearly half of the amoeba’s predicted proteome. Development inA. konaappears molecularly simple relative to the AGM model,Dictyostelium discoideum. However, the acrasid also differs from the dictyostelid in that it does not appear to be starving during development. Instead, developingA. konaappears to be very metabolically active, does not induce autophagy and does not up-regulate its proteasomal genes. Together, these observations strongly suggest that starvation is not essential for AGM development. Nonetheless, development in the two amoebae appears to employ remarkably similar pathways for signaling, motility and, potentially, construction of an extracellular matrix surrounding the developing cell mass. Much of this similarity is also shared with animal development, suggesting that much of the basic tool kit for multicellular development arose early in eukaryote evolution.more » « less
-
Abstract Profile mixture models capture distinct biochemical constraints on the amino acid substitution process at different sites in proteins. These models feature a mixture of time-reversible models with a common matrix of exchangeabilities and distinct sets of equilibrium amino acid frequencies known as profiles. Combining the exchangeability matrix with each profile generates the matrix of instantaneous rates of amino acid exchange for that profile. Currently, empirically estimated exchangeability matrices (e.g. the LG matrix) are widely used for phylogenetic inference under profile mixture models. However, these were estimated using a single profile and are unlikely optimal for profile mixture models. Here, we describe the GTRpmix model that allows maximum likelihood estimation of a common exchangeability matrix under any profile mixture model. We show that exchangeability matrices estimated under profile mixture models differ from the LG matrix, dramatically improving model fit and topological estimation accuracy for empirical test cases. Because the GTRpmix model is computationally expensive, we provide two exchangeability matrices estimated from large concatenated phylogenomic-supermatrices to be used for phylogenetic analyses. One, called Eukaryotic Linked Mixture (ELM), is designed for phylogenetic analysis of proteins encoded by nuclear genomes of eukaryotes, and the other, Eukaryotic and Archaeal Linked mixture (EAL), for reconstructing relationships between eukaryotes and Archaea. These matrices, combined with profile mixture models, fit data better and have improved topology estimation relative to the LG matrix combined with the same mixture models. Starting with version 2.3.1, IQ-TREE2 allows users to estimate linked exchangeabilities (i.e. amino acid exchange rates) under profile mixture models.more » « less
-
ABSTRACT PocheinaandAcrasisare two genera of heterolobosean sorocarpic amoebae within Acrasidae that have historically been considered close relatives. The two genera were differentiated based on their differing fruiting body morphologies. The validity of this taxonomic distinction was challenged when a SSU rRNA phylogenetic study placed an isolate morphologically identified as “Pocheina”roseawithin a clade ofAcrasis roseaisolates. The authors speculated that pocheinoid fruiting body morphology might be the result of aberrantAc.roseafruiting body development, which, if true, would nullify this taxonomic distinction between genera. To clarify Acrasidae systematics, we analyzed SSU rRNA and ITS region sequences from multiple isolates ofPocheina,Acrasis, andAllovahlkampfiagenerated by Polymerase Chain Reaction (PCR) and transcriptomics. We demonstrate that the initial SSU sequence attributed to “P.rosea” originated from anAc.roseaDNA contamination in its amplification reaction. Our analyses, based on morphology, SSU and 5.8S rRNA gene phylogenies, as well as comparative analyses of ITS1 and ITS2 sequences, resolve Acrasidae into three major lineages:Allovahlkampfiaand the strongly supported clades comprisingPocheinaandAcrasis. We confirm that the latter two genera can be identified by their fruiting body morphologies.more » « less
-
Abstract The salamander,Ambystoma annulatum, is considered a “species of special concern” in the state of Arkansas, USA, due to its limited geographic range, specialized habitat requirements and low population size. Although metazoan parasites have been documented in this salamander species, neither its native protists nor microbiome have yet been evaluated. This is likely due to the elusive nature and under‐sampling of the animal. Here, we initiate the cataloguing of microbial associates with the identification of a new heterlobosean species,Naegleria lustrarean. sp. (Excavata, Discoba, Heterolobosea), isolated from feces of an adultA. annulatum.more » « less
An official website of the United States government
