Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We report the All-Sky Automated Survey for SuperNovae discovery of the tidal disruption event (TDE) ASASSN-23bd (AT 2023clx) in NGC 3799, a LINER galaxy with no evidence of strong active galactic nucleus (AGN) activity over the past decade. With a redshift of z = 0.01107 and a peak ultraviolet (UV)/optical luminosity of (5.4 ± 0.4) × 1042 erg s−1, ASASSN-23bd is the lowest-redshift and least-luminous TDE discovered to date. Spectroscopically, ASASSN-23bd shows H α and He i emission throughout its spectral time series, there are no coronal lines in its near-infrared spectrum, and the UV spectrum shows nitrogen lines without the strong carbon and magnesium lines typically seen for AGN. Fits to the rising ASAS-SN light curve show that ASASSN-23bd started to brighten on MJD 59988$$^{+1}_{-1}$$, ∼9 d before discovery, with a nearly linear rise in flux, peaking in the g band on MJD $$60 \, 000^{+3}_{-3}$$. Scaling relations and TDE light curve modelling find a black hole mass of ∼106 M⊙, which is on the lower end of supermassive black hole masses. ASASSN-23bd is a dim X-ray source, with an upper limit of $$L_{0.3-10\, \mathrm{keV}} \lt 1.0\times 10^{40}$$ erg s−1 from stacking all Swift observations prior to MJD 60061, but with soft (∼0.1 keV) thermal emission with a luminosity of $$L_{0.3-2 \, \mathrm{keV}}\sim 4\times 10^{39}$$ erg s−1 in XMM-Newton observations on MJD 60095. The rapid (t < 15 d) light curve rise, low UV/optical luminosity, and a luminosity decline over 40 d of ΔL40 ≈ −0.7 dex make ASASSN-23bd one of the dimmest TDEs to date and a member of the growing ‘Low Luminosity and Fast’ class of TDEs.more » « less
-
Abstract We present a sample of Type Icn supernovae (SNe Icn), a newly discovered class of transients characterized by their interaction with H- and He-poor circumstellar material (CSM). This sample is the largest collection of SNe Icn to date and includes observations of two published objects (SN 2019hgp and SN 2021csp) and two objects not yet published in the literature (SN 2019jc and SN 2021ckj). The SNe Icn display a range of peak luminosities, rise times, and decline rates, as well as diverse late-time spectral features. To investigate their explosion and progenitor properties, we fit their bolometric light curves to a semianalytical model consisting of luminosity inputs from circumstellar interaction and radioactive decay of56Ni. We infer low ejecta masses (≲2M⊙) and56Ni masses (≲0.04M⊙) from the light curves, suggesting that normal stripped-envelope supernova (SESN) explosions within a dense CSM cannot be the underlying mechanism powering SNe Icn. Additionally, we find that an estimate of the star formation rate density at the location of SN 2019jc lies at the lower end of a distribution of SESNe, in conflict with a massive star progenitor of this object. Based on its estimated ejecta mass,56Ni mass, and explosion site properties, we suggest a low-mass, ultra-stripped star as the progenitor of SN 2019jc. For other SNe Icn, we suggest that a Wolf–Rayet star progenitor may better explain their observed properties. This study demonstrates that multiple progenitor channels may produce SNe Icn and other interaction-powered transients.more » « less
-
ABSTRACT We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B − V colours show SN 2021fxy is the first ‘shallow-silicon’ (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.more » « less
-
Abstract We present early-time photometric and spectroscopic observations of the Type Ia supernova (SN Ia) 2021aefx. The early-timeu-band light curve shows an excess flux when compared to normal SNe Ia. We suggest that the early excess blue flux may be due to a rapid change in spectral velocity in the first few days post explosion, produced by the emission of the CaiiH&K feature passing from theuto theBbands on the timescale of a few days. This effect could be dominant for all SNe Ia that have broad absorption features and early-time velocities over 25,000 km s−1. It is likely to be one of the main causes of early excessu-band flux in SNe Ia that have early-time high velocities. This effect may also be dominant in the UV filters, as well as in places where the SN spectral energy distribution is quickly rising to longer wavelengths. The rapid change in velocity can only produce a monotonic change (in flux-space) in theuband. For objects that explode at lower velocities, and have a more structured shape in the early excess emission, there must also be an additional parameter producing the early-time diversity. More early-time observations, in particular early spectra, are required to determine how prominent this effect is within SNe Ia.more » « less
-
Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments.more » « less
-
Abstract We present a multiwavelength photometric and spectroscopic analysis of 13 super-Chandrasekhar-mass/2003fg-like Type Ia supernovae (SNe Ia). Nine of these objects were observed by the Carnegie Supernova Project. The 2003fg-like SNe have slowly declining light curves (Δ m 15 ( B ) < 1.3 mag), and peak absolute B -band magnitudes of −19 < M B < −21 mag. Many of the 2003fg-like SNe are located in the same part of the luminosity–width relation as normal SNe Ia. In the optical B and V bands, the 2003fg-like SNe look like normal SNe Ia, but at redder wavelengths they diverge. Unlike other luminous SNe Ia, the 2003fg-like SNe generally have only one i -band maximum, which peaks after the epoch of the B -band maximum, while their near-IR (NIR) light-curve rise times can be ≳40 days longer than those of normal SNe Ia. They are also at least 1 mag brighter in the NIR bands than normal SNe Ia, peaking above M H = −19 mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark-energy experiments. Spectroscopically, the 2003fg-like SNe exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000–12,000 km s −1 ) in Si ii λ 6355 velocities at maximum light with no rapid early velocity decline, and no clear H -band break at +10 days. We find that SNe with a larger pseudo-equivalent width of C ii at maximum light have lower Si ii λ 6355 velocities and more slowly declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like SNe. The explosion of a C–O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core-degenerate scenario.more » « less