skip to main content

Search for: All records

Creators/Authors contains: "Brumfield, Robb T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Extinction is a dominant force shaping patterns of biodiversity through time; however its role as a catalyst of speciation through its interaction with intraspecific variation has been overlooked. Here, we synthesize ideas alluded to by Darwin and others into the model of “speciation-by-extinction” in which speciation results from the extinction of intermediate populations within a single geographically variable species. We explore the properties and distinguishing features of speciation-by-extinction with respect to other established speciation models. We demonstrate its plausibility by showing that the experimental extinction of populations within variable species can result in speciation. The prerequisites for speciation-by-extinction, geographically structured intraspecific variation and local extinction, are ubiquitous in nature. We propose that speciation-by-extinction may be a prevalent, but underappreciated, speciation mechanism. [Speciation; extinction; speciation mechanisms; intraspecific variation.]

    more » « less
  2. Abstract

    Rivers frequently delimit the geographic ranges of species in the Amazon Basin. These rivers also define the boundaries between genetic clusters within many species, yet river boundaries have been documented to break down in headwater regions where rivers are narrower. To explore the evolutionary implications of headwater contact zones in Amazonia, we examined genetic variation in the Blue-capped Manakin (Lepidothrix coronata), a species previously shown to contain several genetically and phenotypically distinct populations across the western Amazon Basin. We collected restriction site-associated DNA sequence data (RADcap) for 706 individuals and found that spatial patterns of genetic structure indicate several rivers, particularly the Amazon and Ucayali, are dispersal barriers for L. coronata. We also found evidence that genetic connectivity is elevated across several headwater regions, highlighting the importance of headwater gene flow for models of Amazonian diversification. The headwater region of the Ucayali River provided a notable exception to findings of headwater gene flow by harboring non-admixed populations of L. coronata on opposite sides of a < 1-km-wide river channel with a known dynamic history, suggesting that additional prezygotic barriers may be limiting gene flow in this region.

    more » « less
  3. Abstract

    Genetic divergence among isolated populations is not always reflected in phenotypic differentiation. We investigated the genetic and phenotypic differentiation in Diglossa cyanea (Thraupidae; Masked Flowerpiercer), a widely distributed species in the tropical Andes. We found strong evidence for 2 main lineages separated by the Marañón River valley in the Northern Peruvian Low (NPL). These 2 lineages show a deep sequence divergence in mitochondrial DNA (mtDNA; ~6.7% uncorrected p-distance, n = 122), spectral frequency and song structure (with exclusive final whistles in southern populations, n = 88), and wing length (the northern populations are smaller, n = 364). The 2 divergent D. cyanea mitochondrial lineages were not sister to each other, suggesting a possible paraphyly with respect to D. caerulescens (Bluish Flowerpiercer) that remains to be tested with nuclear genomic data. No genetic variation, size difference, or song structure was observed within the extensive range of the southern group (from the NPL to central Bolivia) or within all sampled northern populations (from the NPL to Venezuela). These vocal differences appear to have consequences for song discrimination, and species recognition, according to a previously published playback experiment study. We propose that the southern taxon be elevated to species rank as D. melanopis, a monotypic species (with the proposed name Whistling Masked-Flowerpiercer). In turn, we provide a redefinition of D. cyanea (Warbling Masked-Flowerpiercer), which is now restricted to the northern half of the tropical Andes as a polytypic species with 3 subspecies (tovarensis, obscura, and cyanea). Based on our results, the subspecies dispar should be treated as a junior synonym of cyanea. Our study highlights the need to continue amassing complementary data sets from field observations, experiments, and collection-based assessments to better characterize the evolutionary history, biogeography, bioacoustics, and taxonomy of Neotropical montane birds.

    more » « less
  4. Zetka, M (Ed.)
    Abstract The clapper rail (Rallus crepitans), of the family Rallidae, is a secretive marsh bird species that is adapted for high salinity habitats. They are very similar in appearance to the closely related king rail (R. elegans), but while king rails are limited primarily to freshwater marshes, clapper rails are highly adapted to tolerate salt marshes. Both species can be found in brackish marshes where they freely hybridize, but the distribution of their respective habitats precludes the formation of a continuous hybrid zone and secondary contact can occur repeatedly. This system, thus, provides unique opportunities to investigate the underlying mechanisms driving their differential salinity tolerance as well as the maintenance of the species boundary between the 2 species. To facilitate these studies, we assembled a de novo reference genome assembly for a female clapper rail. Chicago and HiC libraries were prepared as input for the Dovetail HiRise pipeline to scaffold the genome. The pipeline, however, did not recover the Z chromosome so a custom script was used to assemble the Z chromosome. We generated a near chromosome level assembly with a total length of 994.8 Mb comprising 13,226 scaffolds. The assembly had a scaffold N50 was 82.7 Mb, L50 of four, and had a BUSCO completeness score of 92%. This assembly is among the most contiguous genomes among the species in the family Rallidae. It will serve as an important tool in future studies on avian salinity tolerance, interspecific hybridization, and speciation. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  5. Ruane, Sara (Ed.)
    Abstract Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation] 
    more » « less
  6. Abstract

    Humans have profoundly impacted the distribution of plant and animal species over thousands of years. The most direct example of these effects is human‐mediated movement of individuals, either through translocation of individuals within their range or through the introduction of species to new habitats. While human involvement may be suspected in species with obvious range disjunctions, it can be difficult to detect natural versus human‐mediated dispersal events for populations at the edge of a species' range, and this uncertainty muddles how we understand the evolutionary history of populations and broad biogeographical patterns. Studies combining genetic data with archaeological, linguistic and historical evidence have confirmed prehistoric examples of human‐mediated dispersal; however, it is unclear whether these methods can disentangle recent dispersal events, such as species translocated by European colonizers during the past 500 years. We use genomic DNA from historical museum specimens and historical records to evaluate three hypotheses regarding the timing and origin of Northern Bobwhites (Colinus virginianus) in Cuba, whose status as an endemic or introduced population has long been debated. We discovered that bobwhites from southern Mexico arrived in Cuba between the 12th and 16th centuries, followed by the subsequent introduction of bobwhites from the southeastern USA to Cuba between the 18th and 20th centuries. These dates suggest the introduction of bobwhites to Cuba was human‐mediated and concomitant with Spanish colonial shipping routes between Veracruz, Mexico and Havana, Cuba during this period. Our results identify endemic Cuban bobwhites as a genetically distinct population born of hybridization between divergent, introduced lineages.

    more » « less
  7. Sethuraman, A (Ed.)
    Abstract Black-throated Flowerpiercers (Diglossa brunneiventris) are one species representing a phenotypically specialized group of tanagers (Thraupidae) that have hooked bills which allow them to feed by stealing nectar from the base of flowers. Members of the genus are widely distributed in montane regions from Mexico to northern Argentina, and previous studies of Diglossa have focused on their systematics, phylogenetics, and interesting natural history. Despite numerous studies of species within the genus, no genome assembly exists to represent these nectivorous tanagers. We described the assembly of a genome sequence representing a museum-vouchered, wild, female D. brunneiventris collected in Peru. By combining Pacific Biosciences Sequel long-read technology with 10× linked-read and reference-based scaffolding, we produced a 1.08 Gbp pseudochromosomal assembly including 600 scaffolds with a scaffold N50 of 67.3 Mbp, a scaffold L50 of 6, and a BUSCO completeness score of 95%. This new assembly improves representation of the diverse species that comprise the tanagers, improves on scaffold lengths and contiguity when compared to existing genomic resources for tanagers, and provides another avenue of research into the genetic basis of adaptations common to a nectivorous lifestyle among vertebrates. 
    more » « less
  8. Abstract

    Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome‐wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual‐level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long‐term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat‐specific diversification dynamics over evolutionary time scales.

    more » « less