skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brummel, Ian A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lithium lanthanum tantalate (Li3xLa1/3−xTaO3, x = 0.075) thin films were grown via pulsed laser deposition using background gas atmospheres with varying partial pressures of oxygen and argon. The background gas composition was varied from 100% to 6.6% oxygen, with the pressure fixed at 150 mTorr. The maximum ion conductivity of 1.5 × 10−6 S/cm was found for the film deposited in 100% oxygen. The ion conductivity of the films was found to decrease with reduced oxygen content from 100% to 16.6% O2 in the background gas. The 6.6% oxygen background condition produced ion conductivity that approached that of the 100% oxygen condition film. The lithium transfer from the target to the film was found to decrease monotonically with decreasing oxygen content in the background gas but did not account for all changes in the ion conductivity. The activation energy of ion conduction was measured and found to correlate well with the measured ion conductivity trends. Analysis of x-ray diffraction results revealed that the films also exhibited a change in the lattice parameter that directly correlated with the ion conduction activation energy, indicating that a primary factor for determining the conductivity of these films is the changing size of the ion conduction bottleneck, which controls the activation energy of ion conduction. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract Temperature limitations in nickel‐base superalloys have resulted in the emergence of SiC‐based ceramic matrix composites as a viable replacement for gas turbine components in aviation applications. Higher operating temperatures allow for reduced fuel consumption but present a materials design challenge related to environmental degradation. Rare‐earth disilicates (RE 2 Si 2 O 7 ) have been identified as coatings that can function as environmental barriers and minimize hot component degradation. In this work, single‐ and multiple‐component rare‐earth disilicate powders were synthesized via a sol‐gel method with compositions selected to exist in the monoclinic C 2/ m phase ( β phase). Phase stability in multiple cation compositions was shown to follow a rule of mixtures and the C 2/ m phase could be realized for compositions that contained up to 25% dysprosium, which typically only exists in a triclinic, P , phase. All compositions exhibited phase stability from room temperature to 1200°C as assessed by X‐ray diffraction. The thermal expansion tensors for each composition were determined from high‐temperature synchrotron X‐ray diffraction and accompanying Rietveld refinements. It was observed that ytterbium‐containing compositions had larger changes in the α 31 shear component with increasing temperature that led to a rotation of the principal axes. Principal axes rotation of up to 47° were observed for ytterbium disilicate. The results suggest that microstructure design and crystallographic texture may be essential future avenues of investigation to ensure thermo‐mechanical robustness of rare‐earth disilicate environmental barrier coatings. 
    more » « less