skip to main content

Search for: All records

Creators/Authors contains: "Brun, Yuriy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 3, 2024
  2. Free, publicly-accessible full text available October 22, 2024
  3. Free, publicly-accessible full text available May 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. Formally verifying system properties is one of the most effective ways of improving system quality, but its high manual effort requirements often render it prohibitively expensive. Tools that automate formal verification by learning from proof corpora to synthesize proofs have just begun to show their promise. These tools are effective because of the richness of the data the proof corpora contain. This richness comes from the stylistic conventions followed by communities of proof developers, together with the powerful logical systems beneath proof assistants. However, this richness remains underexploited, with most work thus far focusing on architecture rather than on how to make the most of the proof data. This article systematically explores how to most effectively exploit one aspect of that proof data: identifiers. We develop the Passport approach, a method for enriching the predictive Coq model used by an existing proof-synthesis tool with three new encoding mechanisms for identifiers: category vocabulary indexing, subword sequence modeling, and path elaboration. We evaluate our approach’s enrichment effect on three existing base tools: ASTactic, Tac, and Tok. In head-to-head comparisons, Passport automatically proves 29% more theorems than the best-performing of these base tools. Combining the three tools enhanced by the Passport approach automatically proves 38% more theorems than combining the three base tools. Finally, together, these base tools and their enhanced versions prove 45% more theorems than the combined base tools. Overall, our findings suggest that modeling identifiers can play a significant role in improving proof synthesis, leading to higher-quality software. 
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  6. Abstract—We present the Seldonian Toolkit, which enables software engineers to integrate provably safe and fair machine learning algorithms into their systems. Software systems that use data and machine learning are routinely deployed in a wide range of settings from medical applications, autonomous vehicles, the criminal justice system, and hiring processes. These systems, however, can produce unsafe and unfair behavior, such as suggesting potentially fatal medical treatments, making racist or sexist predictions, or facilitating radicalization and polarization. To reduce these undesirable behaviors, software engineers need the ability to easily integrate their machine- learning-based systems with domain-specific safety and fairness requirements defined by domain experts, such as doctors and hiring managers. The Seldonian Toolkit provides special machine learning algorithms that enable software engineers to incorporate such expert-defined requirements of safety and fairness into their systems, while provably guaranteeing those requirements will be satisfied. A video demonstrating the Seldonian Toolkit is available at 
    more » « less
    Free, publicly-accessible full text available May 14, 2024
  7. Free, publicly-accessible full text available May 1, 2024
  8. Free, publicly-accessible full text available May 1, 2024
  9. Free, publicly-accessible full text available January 1, 2024