skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brundage, Michael P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Often in manufacturing systems, scenarios arise where the demand for maintenance exceeds the capacity of maintenance resources. This results in the problem of allocating the limited resources among machines competing for them. This maintenance scheduling problem can be formulated as a Markov decision process (MDP) with the goal of finding the optimal dynamic maintenance action given the current system state. However, as the system becomes more complex, solving an MDP suffers from the curse of dimensionality. To overcome this issue, we propose a two-stage approach that first optimizes a static condition-based maintenance (CBM) policy using a genetic algorithm (GA) and then improves the policy online via Monte Carlo tree search (MCTS). The static policy significantly reduces the state space of the online problem by allowing us to ignore machines that are not sufficiently degraded. Furthermore, we formulate MCTS to seek a maintenance schedule that maximizes the long-term production volume of the system to reconcile the conflict between maintenance and production objectives. We demonstrate that the resulting online policy is an improvement over the static CBM policy found by GA. 
    more » « less