skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Brunner, Manuela"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Precipitation extremes will increase in a warming climate, but the response of flood magnitudes to heavier precipitation events is less clear. Historically, there is little evidence for systematic increases in flood magnitude despite observed increases in precipitation extremes. Here we investigate how flood magnitudes change in response to warming, using a large initial-condition ensemble of simulations with a single climate model, coupled to a hydrological model. The model chain was applied to historical (1961–2000) and warmer future (2060–2099) climate conditions for 78 watersheds in hydrological Bavaria, a region comprising the headwater catchments of the Inn, Danube and Main River, thus representing an area of expressed hydrological heterogeneity. For the majority of the catchments, we identify a ‘return interval threshold’ in the relationship between precipitation and flood increases: at return intervals above this threshold, further increases in extreme precipitation frequency and magnitude clearly yield increased flood magnitudes; below the threshold, flood magnitude is modulated by land surface processes. We suggest that this threshold behaviour can reconcile climatological and hydrological perspectives on changing flood risk in a warming climate. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. ABSTRACT In recent years, numerous flood events have caused loss of life, widespread disruption, and damage across the globe. These devastating impacts highlight the importance of a better understanding of flood generating processes, their impacts, and their variability under climate and landscape changes. Here, we argue that the ability to better model flooding is underpinned by the grand challenge of understanding flood generation mechanisms and potential impacts. To address this challenge, the World Meteorological Organization‐Global Energy and Water Exchanges (GEWEX) Hydrometeorology Panel (GHP) aims to establish a Global Flood Crosscutting project to propagate flood modeling and research knowledge across regions and to synthesize results at the global scale. This paper outlines a framework for understanding the dynamics and impacts of runoff generation processes and a rationale for the role of a Global Flood Crosscutting project to address these challenges. Within this Global Flood Crosscutting project, we will establish a common terminology and methods to enable the global research community to exchange knowledge and experiences, and to design experiments toward developing actionable recommendations for more effective flood management practices and policies for improved resilience. This harmonization of rich perspectives across disciplines will foster the co‐production of knowledge primed to advance flood research, particularly in the current period of heightened climate variability and rapid change. It will create a new transdisciplinary paradigm for flood science, wherein different dimensions of mechanistic understanding and processes are rigorously considered alongside socioeconomic impacts, early warning communications, and longer‐term adaptation to alleviate flood risks in society. 
    more » « less