The first ever demonstration of temporal focusing with short wave infrared (SWIR) excitation and emission is demonstrated, achieving a penetration depth of 500
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract µ m in brain tissue. This is substantially deeper than the highest previously-reported values for temporal focusing imaging in brain tissue, and demonstrates the value of these optimized wavelengths for neurobiological applications. -
Abstract The development of fluorophores with photoemission beyond 1000 nm provides the opportunity to develop novel fluorescence microscopes sensitive to those wavelengths. Imaging at wavelengths beyond the visible spectrum enables imaging depths of hundreds of microns in intact tissue, making this attractive for volumetric imaging applications. Here, a novel shortwave‐infrared line‐scan confocal microscope is presented that is capable of deep imaging of biological specimens, as demonstrated by visualization of labeled glomeruli in a fixed uncleared kidney at depths beyond 400 µm. Imaging of brain vasculature labeled with the near‐infrared organic dye indocyanine green, the shortwave‐infrared organic dye Chrom7, and rare earth‐doped nanoparticles is also shown, thus encompassing the entire spectrum detectable by a typical shortwave‐infrared sensitive InGaAs detector.
-
Abstract Bright fluorophores in the near‐infrared and shortwave infrared (SWIR) regions of the electromagnetic spectrum are essential for optical imaging in vivo. In this work, we utilized a 7‐dimethylamino flavylium heterocycle to construct a panel of novel red‐shifted polymethine dyes, with emission wavelengths from 680 to 1045 nm. Photophysical characterization revealed that the 1‐ and 3‐methine dyes display enhanced photostability and the 5‐ and 7‐methine dyes exhibit exceptional brightness for their respective spectral regions. A micelle formulation of the 7‐methine facilitated SWIR imaging in mice. This report presents the first polymethine dye designed and synthesized for SWIR in vivo imaging.