skip to main content

Search for: All records

Creators/Authors contains: "Bryan, Frank O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The mixing of tracers by mesoscale eddies, parameterized in many ocean general circulation models (OGCMs) as a diffusive‐advective process, contributes significantly to the distribution of tracers in the ocean. In the ocean interior, diffusive contribution occurs mostly along the direction parallel to local neutral density surfaces. However, near the surface of the ocean, small‐scale turbulence and the presence of the boundary itself break this constraint and the mesoscale transport occurs mostly along a plane parallel to the ocean surface (horizontal). Although this process is easily represented in OGCMs with geopotential vertical coordinates, the representation is more challenging in OGCMs that use a general vertical coordinate, where surfaces can be tilted with respect to the horizontal. We propose a method for representing the diffusive horizontal mesoscale fluxes within the surface boundary layer of general vertical coordinate OGCMs. The method relies on regridding/remapping techniques to represent tracers in a geopotential grid. Horizontal fluxes are calculated on this grid and then remapped back to the native grid, where fluxes are applied. The algorithm is implemented in an ocean model and tested in idealized and realistic settings. Horizontal diffusion can account for up to 10% of the total northward heat transport in the Southern Ocean and Western boundary current regions of the Northern Hemisphere. It also reduces the vertical stratification of the upper ocean, which results in an overall deepening of the surface boundary layer depth. Finally, enabling horizontal diffusion leads to meaningful reductions in the near‐surface global bias of potential temperature and salinity.

    more » « less
  2. Abstract

    We examine the effects of the submesoscale in mediating the response to projected warming of phytoplankton new production and export using idealized biogeochemical tracers in a high‐resolution regional model of the Porcupine Abyssal Plain region of the North Atlantic. We quantify submesoscale effects by comparing our control run to an integration in which submesoscale motions have been suppressed using increased viscosity. Annual new production is slightly reduced by submesoscale motions in a climate representative of the early 21st‐century and slightly increased by submesoscale motions in a climate representative of the late 21st‐century. The warmer climate at the end of the 21st century reduces resolved submesoscale activity by a factor of 2–3. Resolving the submesoscale, however, does not strongly impact the projected reduction in annual production under representative warming. Organic carbon export from the surface ocean includes both direct sinking of detritus (the biological gravitational pump) and advective transport mediated pathways; the sinking component is larger than advectively mediated vertical transport by up to an order of magnitude across a wide range of imposed sinking rates. The submesoscales are responsible for most of the advective carbon export, however, which is thus largely reduced in a warmer climate. In summary, our results demonstrate that resolving more of the submesoscale has a modest effect on present‐day new production, a small effect on simulated reductions in new production under global warming, and a large effect on advectively mediated export fluxes.

    more » « less
  3. Abstract

    The thermal component of oceanic eddy available potential energy (EPE) generation due to air‐sea interaction is proportional to the product of anomalous sea surface temperature (SST) and net air‐sea heat flux (SHF). In this study we assess EPE generation and its timescale and space‐scale dependence from observations and a high‐resolution coupled climate model. A dichotomy exists in the literature with respect to the sign of this term, that is, whether it is a source or a sink of EPE. We resolve this dichotomy by partitioning the SST and net heat flux into climatological mean, climatological seasonal cycle, and remaining transient contributions, thereby separating the mesoscale eddy variability from the forced seasonal cycle. In this decomposition the mesoscale air‐sea SST‐SHF feedbacks act as a 0.1 TW global sink of EPE. In regions of the ocean with a large seasonal cycle, for example, midlatitudes of the Northern Hemisphere, the EPE generation by the forced seasonal cycle exceeds the mesoscale variability sink, such that the global generation by seasonal plus eddy variability acts as a 0.8 TW source. EPE destruction is largest in the midlatitude western boundary currents due to mesoscale air‐sea interaction and in the tropical Pacific where SST variability is due mainly to the El Niño–Southern Oscillation. The EPE sink in western boundary currents is spatially aligned with SST gradients and offset to the poleward side of currents, while the mean and seasonal generation are aligned with the warm core of the current. By successively smoothing the data in space and time we find that half of the EPE sink is confined to timescales less than annual and length scales less than 2°, within the oceanic mesoscale band.

    more » « less
  4. Abstract

    Tropical modes of variability, including the Madden‐Julian Oscillation (MJO) and the El Niño‐Southern Oscillation (ENSO), are challenging to represent in climate models. Previous studies suggest their fundamental dependence on zonal asymmetry, but such dependence is rarely addressed with fully coupled ocean dynamics. This study fills the gap by using fully coupled, idealized Community Earth System Model (CESM) and comparing two nominally ocean‐covered configurations with and without a meridional boundary. For the MJO‐like intraseasonal mode, its separation from equatorial Kelvin waves and the eastward propagation of its convective and dynamic signals depend on the zonal gradient of the mean state. For the ENSO‐like interannual mode, in the absence of the ocean's meridional boundary, a circum‐equatorial dominant mode emerges with distinct ocean dynamics. The interpretation of the dependence of these modes on zonal asymmetry is relevant to their representation in realistic climate models.

    more » « less
  5. Abstract

    Idealized models can reveal insights into Earth’s climate system by reducing its complexities. However, their potential is undermined by the scarcity of fully coupled idealized models with components comparable to contemporary, comprehensive Earth System Models. To fill this gap, we compare and contrast the climates of two idealized planets which build on the Simpler Models initiative of the Community Earth System Model (CESM). Using the fully coupled CESM, the Aqua configuration is ocean‐covered except for two polar land caps, and the Ridge configuration has an additional pole‐to‐pole grid‐cell‐wide continent. Contrary to most sea surface temperature profiles assumed for atmosphere‐only aquaplanet experiments with the thermal maximum on the equator, the coupled Aqua configuration is characterized by a global cold belt of wind‐driven equatorial upwelling, analogous to the eastern Pacific cold tongue. The presence of the meridional boundary on Ridge introduces zonal asymmetry in thermal and circulation features, similar to the contrast between western and eastern Pacific. This zonal asymmetry leads to a distinct climate state from Aqua, cooled by ∼2°C via the radiative feedback of clouds and water vapor. The meridional boundary of Ridge is also crucial for producing a more Earth‐like climate state compared to Aqua, including features of atmospheric and ocean circulation, the seasonal cycle of the Intertropical Convergence Zone, and the meridional heat transport. The mean climates of these two basic configurations provide a baseline for exploring other idealized ocean geometries, and their application for investigating various features and scale interactions in the coupled climate system.

    more » « less
  6. Abstract

    Recent studies have explored the sensitivity of global ocean model simulations to the treatment of riverine freshwater and the representation of estuarine processes via an estuary box model applied within Community Earth System Model (CESM). This study builds on these efforts by assessing the model skill score relative to a new salinity climatology. The new climatology averages the original observational data of the World Ocean Database directly onto the CESM ocean component tracer grid cells without spatial interpolation, smoothing, or other gap‐filling techniques to mitigate coastal ocean salinity bias present in the World Ocean Atlas. The mean square error for coastal upper ocean salinity relative to climatology is reduced by up to 14%, and the mean square error of near‐surface salinity stratification is reduced by up to 28% near major river mouths in the simulations with improved treatments of river runoff. The improvement in upper ocean bulk salinity is attributed primarily to focusing runoff as point sources thereby avoiding the artificial horizontal spreading of the control run and to applying a locally varying instead of a global constant reference salinity for riverine virtual salt fluxes. The improvements in near‐surface salinity stratification are primarily attributed to adding parameterized estuarine mixing with the estuary box model. Salinity and salinity stratification skill improvements are achieved not just near large rivers but also along the global coast and skill improvements extend far offshore. Despite these improvements, many other sources of model‐climatology mismatch in coastal salinity and stratification remain and merit further attention.

    more » « less
  7. Abstract

    This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air‐sea interactions resolved by satellite observations (OBS) and by two climate model simulations run with eddy‐resolving high‐resolution (HR) and eddy‐parameterized low‐resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface temperature (SST) and turbulent heat flux (THF) variability and co‐variability over scales between 50 and 10,000 km and 60 days to 80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper‐ocean temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that the atmosphere dominates the SST and THF variability over zonal wavelengths larger than ∼2,000–2,500 km. In HR and OBS, ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius of deformation (R1, ∼600–2,000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF (and consequently of SST) than at larger scales. The ocean forcing also induces oscillations in SST and THF with periods ranging from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that driven by atmospheric forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.

    more » « less