Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis In response to rapidly changing environmental conditions, many organisms are experiencing shifts in geographic ranges and in the timing and expression of key life-history traits, which have important effects on fitness. However, the physiological mechanisms that mediate these phenotypic responses, such as endocrine and other signaling pathways are not well understood. This information will be critical for predicting organismal responses to climate change because physiological mechanisms are often highly responsive to environmental cues and influence the phenotypic variation available to selection. Additionally, they often integrate suites of correlated traits and are thus expected to influence the evolutionary response to selection. The overarching goals of this symposium were to gain novel insights into the physiological mechanisms that underlie organismal responses to rapidly changing environmental conditions and to identify gaps in knowledge and experimental approaches to advance the field. Here we review and discuss the symposium contributions and the research themes that emerged as important foci for future studies.more » « less
-
Synopsis The fitness implications of climate variability and change are often estimated by integrating an organism’s thermal sensitivity of performance across a time series of experienced body temperatures. Although this approach is an important first step in evaluating an organism’s sensitivity to climate or climate change, it ignores potential influences of recent exposure to thermal stress on current thermal sensitivity. Here, we account for recent thermal stress by estimating rates of damage, repair, and other carryover effects; and we illustrate the approach with fecundity and development rate data from experiments that exposed aphids to various stressful and fluctuating temperatures. Our analyses indicate that heat stress for these aphids starts near the upper thermal limit for performance; that heat stress intensifies with both the exposure duration and with temperature; and that there is considerable capacity for repair at temperatures near the thermal optimum for performance. Results from experiments with aphids indicate that incorporating time series of damage, recovery, and repair will be necessary to anticipate fitness outcomes of climate change and variability.more » « less
-
Abstract Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use‐inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill‐building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science.more » « less
An official website of the United States government
