Oceanic mixing, mostly driven by the breaking of internal waves at small scales in the ocean interior, is of major importance for ocean circulation and the ocean response to future climate scenarios. Understanding how internal waves transfer their energy to smaller scales from their generation to their dissipation is therefore an important step for improving the representation of ocean mixing in climate models. In this study, the processes leading to cross-scale energy fluxes in the internal wave field are quantified using an original decomposition approach in a realistic numerical simulation of the California Current. We quantify the relative contribution of eddy–internal wave interactions and wave–wave interactions to these fluxes and show that eddy–internal wave interactions are more efficient than wave–wave interactions in the formation of the internal wave continuum spectrum. Carrying out twin numerical simulations, where we successively activate or deactivate one of the main internal wave forcing, we also show that eddy–near-inertial internal wave interactions are more efficient in the cross-scale energy transfer than eddy–tidal internal wave interactions. This results in the dissipation being dominated by the near-inertial internal waves over tidal internal waves. A companion study focuses on the role of stimulated cascade on the energy and enstrophy fluxes.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Arbic, Brian_K (2)
-
Buijsman, Maarten_C (2)
-
Alford, Matthew_H (1)
-
Ansong, Joseph_K (1)
-
Barkan, Roy (1)
-
Delpech, Audrey (1)
-
Kunze, Eric (1)
-
McWilliams, James_C (1)
-
Menemenlis, Dimitris (1)
-
Nelson, Arin_D (1)
-
Savage, Anna_C (1)
-
Shriver, Jay_F (1)
-
Siyanbola, Oladeji_Q (1)
-
Srinivasan, Kaushik (1)
-
Wallcraft, Alan_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Ansong, Joseph_K ; Arbic, Brian_K ; Nelson, Arin_D ; Alford, Matthew_H ; Kunze, Eric ; Menemenlis, Dimitris ; Savage, Anna_C ; Shriver, Jay_F ; Wallcraft, Alan_J ; Buijsman, Maarten_C ( , Journal of Geophysical Research: Oceans)
Abstract This paper examines spectra of horizontal kinetic energy (HKE) in the surface and sub‐surface ocean, with an emphasis on internal gravity wave (IGW) motions, in global high‐resolution ocean simulations. Horizontal wavenumber‐frequency spectra of surface HKE are computed over seven oceanic regions from two global simulations of the HYbrid Coordinate Ocean Model (HYCOM) and three global simulations of the Massachusetts Institute of Technology general circulation model (MITgcm). In regions with high IGW activity, high surface HKE variance in the horizontal wavenumber‐frequency spectra is aligned along IGW linear dispersion curves. For both HYCOM and MITgcm, and in almost all regions, finer horizontal resolution yields more energetic supertidal IGW continuum spectra. The ratio of high‐horizontal‐wavenumber variance in semi‐diurnal and supertidal motions relative to lower‐frequency motions, a quantity of great interest for swath altimetry, depends on the model employed and the horizontal resolution within the model, implying that quantitative predictions of the partition between low‐ and high‐frequency motions taken from particular simulations should be treated with care. The frequency‐vertical wavenumber spectra, frequency spectra, and vertical wavenumber spectra from the models are compared to spectra computed from McLane profilers at nine locations. In general, MITgcm spectra match the McLane profiler spectra more closely at high frequencies (|
ω | > 4.5 cpd). In both models, vertical wavenumber spectra roll off more steeply than observations at high vertical wavenumbers (m > 10−2cpm). The vertical wavenumber spectra in such models is an important target for improvement, due to turbulence production and dissipation that takes place at high vertical wavenumbers.