skip to main content

Search for: All records

Creators/Authors contains: "Bundy, Randelle M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    ProchlorococcusandSynechococcusare the most abundant photosynthesizing organisms in the oceans. Gene content variation among picocyanobacterial populations in separate ocean basins often mirrors the selective pressures imposed by the region’s distinct biogeochemistry. By pairing genomic datasets with trace metal concentrations from across the global ocean, we show that the genomic capacity for siderophore-mediated iron uptake is widespread inSynechococcusand low-light adaptedProchlorococcuspopulations from deep chlorophyll maximum layers of iron-depleted regions of the oligotrophic Pacific and S. Atlantic oceans:Prochlorococcussiderophore consumers were absent in the N. Atlantic ocean (higher new iron flux) but constituted up to half of allProchlorococcusgenomes from metagenomes in the N. Pacific (lower new iron flux). Picocyanobacterial siderophore consumers, like many other bacteria with this trait, also lack siderophore biosynthesis genes indicating that they scavenge exogenous siderophores from seawater. Statistical modeling suggests that the capacity for siderophore uptake is endemic to remote ocean regions where atmospheric iron fluxes are the smallest, especially at deep chlorophyll maximum and primary nitrite maximum layers. We argue that abundant siderophore consumers at these two common oceanographic features could be a symptom of wider community iron stress, consistent with prior hypotheses. Our results provide a clear example of iron as a selective force driving the evolution ofmore »marine picocyanobacteria.

    « less
  2. Abstract

    It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotrophAlteromonas macleodiiATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can bemore »directly influenced by microbial activities.

    « less
  3. Despite very low concentrations of cobalt in marine waters, cyanobacteria in the genus Prochlorococcus retain the genetic machinery for the synthesis and use of cobalt-bearing cofactors (cobalamins) in their genomes. We explore cobalt metabolism in a Prochlorococcus isolate from the equatorial Pacific Ocean (strain MIT9215) through a series of growth experiments under iron- and cobalt-limiting conditions. Metal uptake rates, quantitative proteomic measurements of cobalamin-dependent enzymes, and theoretical calculations all indicate that Prochlorococcus MIT9215 can sustain growth with less than 50 cobalt atoms per cell, ∼100-fold lower than minimum iron requirements for these cells (∼5,100 atoms per cell). Quantitative descriptions of Prochlorococcus cobalt limitation are used to interpret the cobalt distribution in the equatorial Pacific Ocean, where surface concentrations are among the lowest measured globally but Prochlorococcus biomass is high. A low minimum cobalt quota ensures that other nutrients, notably iron, will be exhausted before cobalt can be fully depleted, helping to explain the persistence of cobalt-dependent metabolism in marine cyanobacteria.