Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We survey 20 reconnection outflow events observed by Magnetospheric MultiScale in the low-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of ion bulk heating produced by reconnection. The range of inflow Alfvén speeds (800–4000 km s−1) and inflow ionβ(0.002–1) covered by this study is in a plasma regime that could be applicable to the solar corona and flare environments. We find that the observed ion heating increases with increasing inflow (upstream) Alfvén speed,VA, based on the reconnecting magnetic field and the upstream plasma density. However, ion heating does not increase linearly as a function of available magnetic energy per particle, . Instead, the heating increases progressively less as rises. This is in contrast to a previous study using the same data set, which found that electron heating in this high-Alfvén-speed and low-βregime scales linearly with , with a scaling factor nearly identical to that found for the low-VAand high-βmagnetopause. Consequently, the ion-to-electron heating ratio in reconnection exhausts decreases with increasing upstreamVA, suggesting that the energy partition between ions and electrons in reconnection exhausts could be a function of the available magnetic energy per particle. Finally, we find that the observed difference in ion and electron heating scaling may be consistent with the predicted effects of a trapping potential in the exhaust, which enhances electron heating, but reduces ion heating.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Abstract We use the three‐dimensional (3‐D) global hybrid code ANGIE3D to simulate the interaction of four solar wind tangential discontinuities (TDs) observed by ARTEMIS P1 from 0740 UT to 0800 UT on 28 December 2019 with the bow shock, magnetosheath, and magnetosphere. We demonstrate how the four discontinuities produce foreshock transients, a magnetosheath cavity‐like structure, and a brief magnetopause crossing observed by THEMIS and MMS spacecraft from 0800 UT to 0830 UT. THEMIS D observed entries into foreshock transients exhibiting low density, low magnetic field strength, and high temperature cores bounded by compressional regions with high densities and high magnetic field strengths. The MMS spacecraft observed cavities with strongly depressed magnetic field strengths and highly deflected velocity in the magnetosheath downstream from the foreshock. Dawnside THEMIS A magnetosheath observations indicate a brief magnetosphere entry exhibiting enhanced magnetic field strength, low density, and decreased and deflected velocity (sunward flow). The solar wind inputs into the 3‐D hybrid simulations resemble those seen by ARTEMIS. We simulate the interaction of four oblique TDs with properties similar to those in the observation. We place virtual spacecraft at the locations where observations were made. The hybrid simulations predict similar characteristics of the foreshock transients, a magnetosheath cavity, and a magnetopause crossing with characteristics similar to those observed by the multi‐spacecraft observations. The detailed and successful comparison of the interaction involving multiple TDs will be presented.more » « less
-
Abstract We have surveyed 21 reconnection exhaust events observed by Magnetospheric MultiScale in the low-plasma-βand high-Alfvén-speed regime of the Earth’s magnetotail to investigate the scaling of electron bulk heating produced by reconnection. The ranges of inflow Alfvén speed and inflow electronβecovered by this study are 800–4000 km s−1and 0.001–0.1, respectively, and the observed heating ranges from a few hundred electronvolts to several kiloelectronvolts. We find that the temperature change in the reconnection exhaust relative to the inflow, ΔTe, is correlated with the inflow Alfvén speed,VAx,in, based on the reconnecting magnetic field and the inflow plasma density. Furthermore, ΔTeis linearly proportional to the inflowing magnetic energy per particle, , and the best fit to the data produces the empirical relation ΔTe= 0.020 , i.e., the electron temperature increase is on average ∼2% of the inflowing magnetic energy per particle. This magnetotail study extends a previous magnetopause reconnection study by two orders of magnitude in both magnetic energy and electronβ, to a regime that is comparable to the solar corona. The validity of the empirical relation over such a large combined magnetopause–magnetotail plasma parameter range ofVA∼ 10–4000 km s−1andβe∼ 0.001–10 suggests that one can predict the magnitude of the bulk electron heating by reconnection in a variety of contexts from the simple knowledge of a single parameter: the Alfvén speed of the ambient plasma.more » « less
-
Abstract An important aspect of energy dissipation in weakly collisional plasmas is that of energy partitioning between different species (e.g., protons and electrons) and between different energy channels. Here we analyse pressure–strain interaction to quantify the fractions of isotropic compressive, gyrotropic, and nongyrotropic heating for each species. An analysis of kinetic turbulence simulations is compared and contrasted with corresponding observational results from Magnetospheric Multiscale Mission data in the magnetosheath. In assessing how protons and electrons respond to different ingredients of the pressure–strain interaction, we find that compressive heating is stronger than incompressive heating in the magnetosheath for both electrons and protons, while incompressive heating is stronger in kinetic plasma turbulence simulations. Concerning incompressive heating, the gyrotropic contribution for electrons is dominant over the nongyrotropic contribution, while for protons nongyrotropic heating is enhanced in both simulations and observations. Variations with plasma β are also discussed, and protons tend to gain more heating with increasing β .more » « less
-
Abstract We investigate the detailed properties of electron inflow in an electron-only reconnection event observed by the four Magnetospheric Multiscale (MMS) spacecraft in the Earth's turbulent magnetosheath downstream of the quasi-parallel bow shock. The lack of ion coupling was attributed to the small-scale sizes of the current sheets, and the observed bidirectional super-Alfvénic electron jets indicate that the MMS spacecraft crossed the reconnecting current sheet on both sides of an active X-line. Remarkably, the MMS spacecraft observed the presence of large asymmetries in the two electron inflows, with the inflows (normal to the current sheet) on the two sides of the reconnecting current layer differing by as much as a factor of four. Furthermore, even though the four MMS spacecraft were separated by less than seven electron skin depths, the degree of inflow asymmetry was significantly different at the different spacecraft. The asymmetry in the inflow speeds was larger with increasing distances downstream from the reconnection site, and the asymmetry was opposite on the two sides of the X-line. We compare the MMS observations with a 2D kinetic particle-in-cell (PIC) simulation and find that the asymmetry in the inflow speeds stems from in-plane currents generated via the combination of reconnection-mediated inflows and parallel flows along the magnetic separatrices in the presence of a large guide field.more » « less
-
Abstract Coulomb collisions provide plasma resistivity and diffusion but in many low-density astrophysical plasmas such collisions between particles are extremely rare. Scattering of particles by electromagnetic waves can lower the plasma conductivity. Such anomalous resistivity due to wave-particle interactions could be crucial to many processes, including magnetic reconnection. It has been suggested that waves provide both diffusion and resistivity, which can support the reconnection electric field, but this requires direct observation to confirm. Here, we directly quantify anomalous resistivity, viscosity, and cross-field electron diffusion associated with lower hybrid waves using measurements from the four Magnetospheric Multiscale (MMS) spacecraft. We show that anomalous resistivity is approximately balanced by anomalous viscosity, and thus the waves do not contribute to the reconnection electric field. However, the waves do produce an anomalous electron drift and diffusion across the current layer associated with magnetic reconnection. This leads to relaxation of density gradients at timescales of order the ion cyclotron period, and hence modifies the reconnection process.more » « less
-
Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as theL–Nplane, whereLis the direction of the reversing and reconnecting magnetic field andNis normal to the current sheet. The X-line is often assumed to be orthogonal to theL–Nplane (defined as theM-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to theL–Nplane. This finding is somewhat opportune as two of the MMS satellites at the sameNlocation report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation inL. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° fromM, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in theL-direction through the EDR, which can be resolved if one assumes a shear in theL–Nplane and motion in theM-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line.more » « less
-
Electrons in earth's magnetotail are energized significantly both in the form of heating and in the form of acceleration to non-thermal energies. While magnetic reconnection is considered to play an important role in this energization, it still remains unclear how electrons are energized and how energy is partitioned between thermal and non-thermal components. Here, we show, based on in situ observations by NASA's magnetospheric multiscale mission combined with multi-component spectral fitting methods, that the average electron energy [Formula: see text] (or equivalently temperature) is substantially higher when the locally averaged electric field magnitude [Formula: see text] is also higher. While this result is consistent with the classification of “plasma-sheet” and “tail-lobe” reconnection during which reconnection is considered to occur on closed and open magnetic field lines, respectively, it further suggests that a stochastic Fermi acceleration in 3D, reconnection-driven turbulence is essential for the production and confinement of energetic electrons in the reconnection region. The puzzle is that the non-thermal power-law component can be quite small even when the electric field is large and the bulk population is significantly heated. The fraction of non-thermal electron energies varies from sample to sample between ∼20% and ∼60%, regardless of the electric field magnitude. Interestingly, these values of non-thermal fractions are similar to those obtained for the above-the-looptop hard x-ray coronal sources for solar flares.more » « less