skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Burch, Kenneth S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. α-RuCl3, a narrow-band Mott insulator with a large work function, offers intriguing potential as a quantum material or as a charge acceptor for electrical contacts in van der Waals devices. In this work, we perform a systematic study of the optical reflection contrast of α-RuCl3 nanoflakes on oxidized silicon wafers and estimate the accuracy of this imaging technique to assess the crystal thickness. Via spectroscopic micro-ellipsometry measurements, we characterize the wavelength-dependent complex refractive index of α-RuCl3 nanoflakes of varying thickness in the visible and near-infrared. Building on these results, we simulate the optical contrast of α-RuCl3 nanoflakes with thicknesses below 100 nm on SiO2/Si substrates under different illumination conditions. We compare the simulated optical contrast with experimental values extracted from optical microscopy images and obtain good agreement. Finally, we show that optical contrast imaging allows us to retrieve the thickness of the RuCl3 nanoflakes exfoliated on an oxidized silicon substrate with a mean deviation of −0.2 nm for thicknesses below 100 nm with a standard deviation of only 1 nm. Our results demonstrate that optical contrast can be used as a non-invasive, fast, and reliable technique to estimate the α-RuCl3 thickness. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  2. Free, publicly-accessible full text available July 15, 2025
  3. Abstract The quest to improve transparent conductors balances two key goals: increasing electrical conductivity and increasing optical transparency. To improve both simultaneously is hindered by the physical limitation that good metals with high electrical conductivity have large carrier densities that push the plasma edge into the ultra-violet range. Technological solutions reflect this trade-off, achieving the desired transparencies only by reducing the conductor thickness or carrier density at the expense of a lower conductance. Here we demonstrate that highly anisotropic crystalline conductors offer an alternative solution, avoiding this compromise by separating the directions of conduction and transmission. We demonstrate that slabs of the layered oxides Sr2RuO4and Tl2Ba2CuO6+δare optically transparent even at macroscopic thicknesses >2 μm for c-axis polarized light. Underlying this observation is the fabrication of out-of-plane slabs by focused ion beam milling. This work provides a glimpse into future technologies, such as highly polarized and addressable optical screens. 
    more » « less
  4. Abstract Proximity effect, which is the coupling between distinct order parameters across interfaces of heterostructures, has attracted immense interest owing to the customizable multifunctionalities of diverse 3D materials. This facilitates various physical phenomena, such as spin order, charge transfer, spin torque, spin density wave, spin current, skyrmions, and Majorana fermions. These exotic physics play important roles for future spintronic applications. Nevertheless, several fundamental challenges remain for effective applications: unavoidable disorder and lattice mismatch limits in the growth process, short characteristic length of proximity, magnetic fluctuation in ultrathin films, and relatively weak spin–orbit coupling (SOC). Meanwhile, the extensive library of atomically thin, 2D van der Waals (vdW) layered materials, with unique characteristics such as strong SOC, magnetic anisotropy, and ultraclean surfaces, offers many opportunities to tailor versatile and more effective functionalities through proximity effects. Here, this paper focuses on magnetic proximity, i.e., proximitized magnetism and reviews the engineering of magnetism‐related functionalities in 2D vdW layered heterostructures for next‐generation electronic and spintronic devices. The essential factors of magnetism and interfacial engineering induced by magnetic layers are studied. The current limitations and future challenges associated with magnetic proximity‐related physics phenomena in 2D heterostructures are further discussed. 
    more » « less